Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

Abstract

Laser-cooled atoms are central to modern precision measurements1,2,3,4,5,6. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics7,8, quantum information processing9,10,11 and matter–wave interferometry12. Although significant progress has been made in miniaturizing atomic metrological devices13,14, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime15,16. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult17,18. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Concept of the grating chip MOT.
Figure 2: Grating chips.
Figure 3: Variation of atom number with laser detuning and intensity.
Figure 4: Variation of peak atom number N with trapping volume V.
Figure 5: Temperature measurements on chip B.

References

  1. 1

    Takamoto, M., Hong, F-L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Buning, G. K. et al. Extended coherence time on the clock transition of optically trapped rubidium. Phys. Rev. Lett. 106, 240801 (2011).

    Article  Google Scholar 

  4. 4

    Bodart, Q. et al. A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 96, 134101 (2010).

    Article  Google Scholar 

  5. 5

    Poli, N. et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Lamporesi, G., Bertoldi, A., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100, 050801 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–201 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Müller, H., Peters, A. & Chu, S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–930 (2010).

    Article  Google Scholar 

  13. 13

    Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460–1462 (2004); actual products at www.symmetricom.com.

    CAS  Article  Google Scholar 

  14. 14

    Shah, V., Knappe, S., Schwindt, P. D. D. & Kitching, J. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nature Photon. 1, 649–652 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Van Zoest, T. et al. Bose–Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Reichel, J. & Vuletić, V. (eds) Atom Chips (Wiley, 2011).

    Google Scholar 

  17. 17

    Pollock, S., Cotter, J. P., Laliotis, A. & Hinds, E. A. Integrated magneto-optical traps on a chip using silicon pyramid structures. Opt. Express 17, 14109–14114 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Pollock, S., Cotter, J. P., Laliotis, A., Ramirez-Martinez, F. & Hinds, E. A. Characteristics of integrated magneto-optical traps for atom chips. New J. Phys. 13, 043029 (2011).

    Article  Google Scholar 

  19. 19

    Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    Article  Google Scholar 

  21. 21

    Schumm, T. et al. Matter–wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Baumgärtner, F. et al. Measuring energy differences by BEC interferometry on a chip. Phys. Rev. Lett. 105, 243003 (2010).

    Article  Google Scholar 

  23. 23

    Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    CAS  Article  Google Scholar 

  24. 24

    ColdQuanta; available at http://www.coldquanta.com.

  25. 25

    Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Vangeleyn, M., Griffin, P. F., Riis, E. & Arnold, A. S. Single-laser, one beam, tetrahedral magneto-optical trap. Opt. Express 17, 13601–13608 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Vangeleyn, M., Griffin, P. F., Riis, E. & Arnold, A. S. Laser cooling with a single laser beam and a planar diffractor. Opt. Lett. 35, 3453–3455 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Lindquist, K., Stephens, M. & Wieman, C. E. Experimental and theoretical study of the vapor-cell Zeeman optical trap. Phys. Rev. A 46, 4082–4090 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Dalibard, J. & Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarisation gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).

    CAS  Article  Google Scholar 

  30. 30

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Reichel, J., Hänsel, W. & Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398–3401 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from EPSRC, a Knowledge Transfer account for C.N. and a support fund for J.C. and also the ESA (through ESTEC project TEC-MME/2009/66), CEC FP7 (through project 247687; AQUTE), the Wellcome Trust (089245/Z/09/Z), NPL's strategic research programme and the UK National Measurement Office. P.G. is supported by the Royal Society of Edinburgh and E.H. by the Royal Society. Chip A was fabricated by Mir Enterprises. The authors thank P. Edwards for assistance with the SEM insets in Fig. 2a,b. All other SEM images in Fig. 2 are courtesy of Kelvin Nanotechnology, who fabricated chips B–D at the James Watt Nanofabrication Centre. The authors also thank J.P. Griffith and G.A.C. Jones for assistance with GaAs electron-beam lithography.

Author information

Affiliations

Authors

Contributions

C.N., M.V., P.G., E.R. and A.A. constructed and maintained the apparatus. C.N., J.C. and A.A. collected the data, which was analysed by J.C. and A.A. Chip A was designed by J.C. and E.H. Chips B–D were designed by E.R. and A.A., with fabrication directed by P.S., A.S. and C.I. The manuscript was written by J.C., E.H. and A.A., with comments from all authors.

Corresponding authors

Correspondence to E. A. Hinds or A. S. Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 354 kb)

Supplementary information

Supplementary information (GIF 2921 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nshii, C., Vangeleyn, M., Cotter, J. et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nature Nanotech 8, 321–324 (2013). https://doi.org/10.1038/nnano.2013.47

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research