Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Engineering of microfabricated ion traps and integration of advanced on-chip features

Abstract

Atomic ions trapped in electromagnetic potentials have long been used for fundamental studies in quantum physics. Over the past two decades, trapped ions have been successfully used to implement technologies such as quantum computing, quantum simulation, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from other established or emerging disciplines, are used to create new, reliable ion-trap devices aimed at large-scale integration and compatibility with commercial fabrication. This Technical Review covers the fundamentals of ion trapping before discussing the design of ion traps for the aforementioned applications. We overview the current microfabrication techniques and the various considerations behind the choice of materials and processes. Finally, we discuss current efforts to include advanced, on-chip features in next-generation ion traps.

Key points

  • Trapped atomic ions are a highly versatile tool for a wide variety of fields from fundamental physics to quantum technologies.

  • Ion traps use electric and magnetic fields to provide 3D confinement of ions in free space. Ion traps can be fabricated with greater ease by using a surface electrode structure integrated within a microchip.

  • The realization of several quantum technologies that use trapped ions requires the integration of advanced features such as optics and electronics into such a microchip, either within a monolithic structure or through multi-wafer stacking.

  • Development is in progress concerning the integration of multiple features, especially in terms of the compatibility of fabrication processes, chip modularity, functionality and exact specifications of the desired features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Method of rotating the principal axis by angle θ using a six-wire surface trap design41.
Fig. 2: X-junction electrode geometry.
Fig. 3: Ion-trap chips.
Fig. 4: Advanced on-chip technology in an ion trap.

Similar content being viewed by others

References

  1. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    Article  ADS  Google Scholar 

  2. Dehmelt, H. Experiments with an isolated subatomic particle at rest (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 29, 734–738 (1990).

    Article  Google Scholar 

  3. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  4. Bollinger, J. J., Heizen, D. J., Itano, W. M., Gilbert, S. L. & Wineland, D. J. A 303-MHz frequency standard based on trapped Be+ ions. IEEE Trans. Instrum. Meas. 40, 126–128 (1991).

    Article  Google Scholar 

  5. Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics 11, 646–650 (2017).

    Article  ADS  Google Scholar 

  6. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  7. Baumgart, I., Cai, J.-M., Retzker, A., Plenio, M. B. & Wunderlich, C. Ultrasensitive magnetometer using a single atom. Phys. Rev. Lett. 116, 240801 (2016).

    Article  ADS  Google Scholar 

  8. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  9. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  10. Schneider, C., Porras, D. & Schaetz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75, 024401 (2012).

  11. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dawson, P. H. Quadrupole Mass Spectrometry and Its Applications, 1st edn (Elsevier, 1976).

  13. Blain, M. G. et al. Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps. Int. J. Mass. Spectrom. 236, 91–104 (2004).

    Article  Google Scholar 

  14. Pau, S. et al. Microfabricated quadrupole ion trap for mass spectrometer applications. Phys. Rev. Lett. 96, 2–5 (2006).

    Article  Google Scholar 

  15. Cirac, J. I. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  16. Bermudez, A. et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 1–41 (2017).

    Google Scholar 

  17. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  ADS  Google Scholar 

  18. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  ADS  Google Scholar 

  19. Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    Article  ADS  Google Scholar 

  20. Rowe, M. A. et al. Transport of quantum states and separation of ions in a dual RF ion trap. Quantum Inf. Comput. 1, 15 (2002).

    Google Scholar 

  21. Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 8 (2000).

    Article  Google Scholar 

  22. Stick, D. et al. Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006).

    Article  Google Scholar 

  23. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 1–5 (2006).

    Article  Google Scholar 

  24. Wilpers, G., See, P., Gill, P. & Sinclair, A. G. A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access. Appl. Phys. B 111, 21–28 (2013).

    Article  ADS  Google Scholar 

  25. Schwindt, P. D. D. et al. A highly miniaturized vacuum package for a trapped ion atomic clock. Rev. Sci. Instrum. 87, 053112 (2016).

    Article  ADS  Google Scholar 

  26. Sterling, R. C. et al. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014).

    Article  ADS  Google Scholar 

  27. Mielenz, M. et al. Arrays of individually controlled ions suitable for two-dimensional quantum simulations. Nat. Commun. 7, 1–9 (2016).

    Article  Google Scholar 

  28. Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Info Comput. 5, 419–439 (2005).

    MathSciNet  MATH  Google Scholar 

  29. Wilpers, G., See, P., Gill, P. & Sinclair, A. G. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7, 572–576 (2012).

    Article  ADS  Google Scholar 

  30. Mehta, K. K. et al. Ion traps fabricated in a CMOS foundry. Appl. Phys. Lett. 105, 044103 (2014).

    Article  ADS  Google Scholar 

  31. Slichter, D. H. et al. UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Opt. Express 25, 8705 (2017).

    Article  ADS  Google Scholar 

  32. Stuart, J. et al. Chip-integrated voltage sources for control of trapped ions. Phys. Rev. Appl. 11, 024010 (2019).

    Article  ADS  Google Scholar 

  33. Guise, N. D. et al. In-vacuum active electronics for microfabricated ion traps. Rev. Sci. Instrum. 85, 063101 (2014).

    Article  ADS  Google Scholar 

  34. Brown, K. R., Kim, J. & Monroe, C. Co-designing a scalable quantum computer with trapped atomic ions. NPJ Quantum Inf. 2, 16034 (2016).

    Article  Google Scholar 

  35. Hughes, M. D., Lekitsch, B., Broersma, J. A. & Hensinger, W. K. Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011).

    Article  ADS  Google Scholar 

  36. Amini, J. M., Britton, J., Leibfried, D. & Wineland, D. J. in Atomic Chips (eds Reichel, J. & Vuletic, V) ch. 13 (Wiley, 2011); https://doi.org/10.1002/9783527633357.ch13,

  37. Mount, E. et al. Scalable digital hardware for a trapped ion quantum computer. Quantum Inf. Process. 15, 5281–5298 (2016).

    Article  ADS  Google Scholar 

  38. Dan Cho, D. I., Hong, S., Lee, M. & Kim, T. A review of silicon microfabricated ion traps for quantum information processing. Micro Nano Syst. Lett. 3, 31–34 (2015).

    Article  Google Scholar 

  39. Eltony, A. M. et al. Technologies for trapped-ion quantum information systems. Quantum Inf. Process. 15, 5351–5383 (2016).

    Article  ADS  Google Scholar 

  40. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article  ADS  Google Scholar 

  41. Allcock, D. T. C. et al. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect. New J. Phys. 12, 053026 (2010).

    Article  ADS  Google Scholar 

  42. Maunz, P. L. W. High Optical Access Trap 2.0 (Sandia National Laboratories, 2016); https://prod.sandia.gov/sand_doc/2016/160796r.pdf (2016).

  43. House, M. G. Analytic model for electrostatic fields in surface-electrode ion traps. Phys. Rev. A 78, 1–8 (2008).

    Article  Google Scholar 

  44. Wesenberg, J. H. Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008).

    Article  ADS  Google Scholar 

  45. Schmied, R. Electrostatics of gapped and finite surface electrodes. New J. Phys. 12, 023038 (2010).

    Article  ADS  MATH  Google Scholar 

  46. Pearson, C. E. et al. Experimental investigation of planar ion traps. Phys. Rev. A 73, 032307 (2005).

    Article  ADS  Google Scholar 

  47. Nizamani, A. H. & Hensinger, W. K. Optimum electrode configurations for fast ion separation in microfabricated surface ion traps. Appl. Phys. B 106, 327–338 (2012).

    Article  ADS  Google Scholar 

  48. Labaziewicz, J. et al. Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 1–4 (2008).

    Article  Google Scholar 

  49. Stick, D. et al. Demonstration of a microfabricated surface electrode ion trap. Preprint at https://arXiv.org/abs/1008.0990v2 (2010).

  50. Bowler, R. et al. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 1–4 (2012).

    Article  Google Scholar 

  51. Walther, A. et al. Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 080501 (2012).

    Article  ADS  Google Scholar 

  52. Kaufmann, H., Ruster, T., Schmiegelow, C. T., Schmidt-Kaler, F. & Poschinger, U. G. Dynamics and control of fast ion crystal splitting in segmented Paul traps. New J. Phys. 16, 073012 (2014).

    Article  ADS  Google Scholar 

  53. Ruster, T. et al. Experimental realization of fast ion separation in segmented Paul traps. Phys. Rev. A 90, 033410 (2014).

    Article  ADS  Google Scholar 

  54. Kaufmann, P., Gloger, T. F., Kaufmann, D., Johanning, M. & Wunderlich, C. High-fidelity preservation of quantum information during trapped-ion transport. Phys. Rev. Lett. 120, 010501 (2018).

    Article  ADS  Google Scholar 

  55. Reichle, R. et al. Transport dynamics of single ions in segmented microstructured Paul trap arrays. Fortschr. Phys. 54, 666–685 (2006).

    Article  MATH  Google Scholar 

  56. Hucul, D. et al. On the transport of atomic ions in linear and multidimensional ion trap arrays. Quantum Inf. Comput. 6–7, 501–578 (2007).

    MathSciNet  MATH  Google Scholar 

  57. Fürst, H. A. et al. Controlling the transport of an ion: classical and quantum mechanical solutions. New J. Phys. 16, 075007 (2014).

    Article  ADS  Google Scholar 

  58. Hensinger, W. K. et al. T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006).

    Article  ADS  Google Scholar 

  59. Leibrandt, D. R. et al. Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9, 901–919 (2009).

    Google Scholar 

  60. Amini, J. M. et al. Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010).

  61. Moehring, D. L. et al. Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13, 075018 (2011).

    Article  ADS  Google Scholar 

  62. Blakestad, R. B. et al. High fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102, 153002 (2009).

    Article  ADS  Google Scholar 

  63. Shu, G. et al. Heating rates and ion-motion control in a Y-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014).

    Article  ADS  Google Scholar 

  64. Wright, K. et al. Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15, 033004 (2013).

    Article  ADS  Google Scholar 

  65. Mokhberi, A., Schmied, R. & Willitsch, S. Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions. New J. Phys. 19, 043023 (2017).

  66. Blakestad, R. B. et al. Near-ground-state transport of trapped-ion qubits through a multidimensional array. Phys. Rev. A 84, 1–14 (2011).

    Article  Google Scholar 

  67. Schmied, R., Wesenberg, J. H. & Leibfried, D. Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 2–5 (2009).

    Article  Google Scholar 

  68. Hakelberg, F., Kiefer, P., Wittemer, M., Warring, U. & Schaetz, T. Interference in a prototype of a two-dimensional ion trap array quantum simulator. Phys. Rev. Lett. 123, 100504 (2019).

    Article  ADS  Google Scholar 

  69. Krauth, F. N., Alonso, J. & Home, J. P. Optimal electrode geometries for 2-dimensional ion arrays with bi-layer ion traps. J. Phys. B 48, 015001 (2015).

    Article  ADS  Google Scholar 

  70. VanDevender, A. P., Colombe, Y., Amini, J., Leibfried, D. & Wineland, D. J. Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105, 1–4 (2010).

    Article  Google Scholar 

  71. Singer, K. et al. Colloquium: trapped ions as quantum bits — essential numerical tools. Rev. Mod. Phys. 82, 2609–2632 (2009).

    Article  ADS  Google Scholar 

  72. Allcock, D. T. C. et al. A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102, 033031 (2013).

    Article  Google Scholar 

  73. Hahn, H. et al. Multilayer ion trap with three-dimensional microwave circuitry for scalable quantum logic applications. Appl. Phys. B 125, 154 (2019).

    Article  ADS  Google Scholar 

  74. Harlander, M., Brownnutt, M., Hänsel, W. & Blatt, R. Trapped-ion probing of light-induced charging effects on dielectrics. New J. Phys. 12, 093035 (2010).

    Article  ADS  Google Scholar 

  75. Wang, S. X. et al. Laser-induced charging of microfabricated ion traps. J. Appl. Phys. 110, 104901 (2011).

    Article  ADS  Google Scholar 

  76. Hong, S. et al. A new microfabrication method for ion-trap chips that reduces exposure of dielectric surfaces to trapped ions. J. Microelectromech. S. 27, 28–30 (2018).

    Article  Google Scholar 

  77. Hite, D. A. et al. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 1–5 (2012).

    Article  Google Scholar 

  78. Hite, D. A. et al. Surface science for improved ion traps. MRS Bull. 38, 826–833 (2013).

    Article  Google Scholar 

  79. Lin, K. Y., Low, G. H. & Chuang, I. L. Effects of electrode surface roughness on motional heating of trapped ions. Phys. Rev. A 94, 1–11 (2016).

    Google Scholar 

  80. Sterling, R. C. Ytterbium Ion Trapping and Microfabrication of Ion Trap Arrays. PhD thesis, Univ. Sussex (2011).

  81. Niedermayr, M. et al. Cryogenic surface ion trap based on intrinsic silicon. New J. Phys. 16, 113068 (2014).

    Article  ADS  Google Scholar 

  82. Krupka, J. et al. Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies. IEEE Trans. Microw. Theory Tech. 54, 3995–4001 (2006).

    Article  ADS  Google Scholar 

  83. Guise, N. D. et al. Ball-grid array architecture for microfabricated ion traps. J. Appl. Phys. 117, 174901 (2015).

    Article  ADS  Google Scholar 

  84. Bautista-Salvador, A. et al. Multilayer ion trap technology for scalable quantum computing and quantum simulation. New J. Phys. 21, 043011 (2019).

    Article  ADS  Google Scholar 

  85. Allcock, D. T. C. et al. Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107, 913–919 (2012).

    Article  ADS  Google Scholar 

  86. Sterling, R. C., Hughes, M. D., Mellor, C. J. & Hensinger, W. K. Increased surface flashover voltage in microfabricated devices. Appl. Phys. Lett. 103, 143504 (2013).

    Article  ADS  Google Scholar 

  87. Ragg, S., Decaroli, C., Lutz, T. & Home, J. P. Segmented ion-trap fabrication using high precision stacked wafers. Rev. Sci. Instrum. 90, 103203 (2019).

    Article  ADS  Google Scholar 

  88. Eltony, A. M., Wang, S. X., Akselrod, G. M., Herskind, P. F. & Chuang, I. L. Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102, 4–7 (2013).

    Article  Google Scholar 

  89. Doret, S. C. et al. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 14, 073012 (2012).

    Article  ADS  Google Scholar 

  90. Brady, G. R. et al. Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B 103, 801–808 (2011).

    Article  ADS  Google Scholar 

  91. Mintert, F. & Wunderlich, C. Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001).

    Article  ADS  Google Scholar 

  92. Weidt, S. et al. Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 117, 1–6 (2016).

    Article  Google Scholar 

  93. Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    Article  ADS  Google Scholar 

  94. Harty, T. P. et al. High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett. 117, 1–6 (2016).

    Article  Google Scholar 

  95. Khromova, A. et al. Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. Phys. Rev. Lett. 108, 1–5 (2012).

    Article  Google Scholar 

  96. Lake, K. et al. Generation of spin–motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A 91, 012319 (2015).

    Article  ADS  Google Scholar 

  97. Kawai, Y., Shimizu, K., Noguchi, A., Urabe, S. & Tanaka, U. Surface-electrode trap with an integrated permanent magnet for generating a magnetic-field gradient at trapped ions. J. Phys. B At. Mol. Opt. Phys. 50, 025501 (2017).

    Article  ADS  Google Scholar 

  98. Wang, S. X., Labaziewicz, J., Ge, Y., Shewmon, R. & Chuang, I. L. Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009).

    Article  ADS  Google Scholar 

  99. Carsjens, M., Kohnen, M., Dubielzig, T. & Ospelkaus, C. Surface-electrode Paul trap with optimized near-field microwave control. Appl. Phys. B 114, 243–250 (2014).

    Article  ADS  Google Scholar 

  100. Srinivas, R. et al. Trapped-ion spin–motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett. 122, 163201 (2019).

    Article  ADS  Google Scholar 

  101. Welzel, J., Stopp, F. & Schmidt-Kaler, F. Spin and motion dynamics with zigzag ion crystals in transverse magnetic gradients. J. Phys. B 52, 025301 (2019).

    Article  ADS  Google Scholar 

  102. Drndić, M., Johnson, K. S., Thywissen, J. H., Prentiss, M. & Westervelt, R. M. Micro-electromagnets for atom manipulation. Appl. Phys. Lett. 72, 2906–2908 (1998).

    Article  ADS  Google Scholar 

  103. Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749–4752 (2000).

    Article  ADS  Google Scholar 

  104. Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    Article  ADS  Google Scholar 

  105. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  106. Kim, T. H., Herskind, P. F. & Chuang, I. L. Surface-electrode ion trap with integrated light source. Appl. Phys. Lett. 98, 1–4 (2011).

    Google Scholar 

  107. Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    Article  ADS  Google Scholar 

  108. Mehta, K. K. & Ram, R. J. Precise and diffraction-limited waveguide-to-free-space focusing gratings. Sci. Rep. 7, 1–8 (2017).

    Article  Google Scholar 

  109. Niffenegger, R. J. et al. Integrated optical control and enhanced coherence of ion qubits via multi-wavelength photonics. Preprint at https://arXiv.org/abs/2001.05052v1 (2020).

  110. Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Preprint at https://arXiv.org/abs/2002.02258v1 (2020).

  111. Crain, S., Mount, E., Baek, S. & Kim, J. Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105, 1–5 (2014).

    Article  Google Scholar 

  112. Merrill, J. T. et al. Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13, 103005 (2011).

    Article  Google Scholar 

  113. Ghadimi, M. et al. Scalable ion–photon quantum interface based on integrated diffractive mirrors. NPJ Quantum Inf. 3, 4 (2017).

    Article  ADS  Google Scholar 

  114. Herskind, P. F. et al. Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett. 36, 3045 (2011).

    Article  ADS  Google Scholar 

  115. Van Rynbach, A., Maunz, P. & Kim, J. An integrated mirror and surface ion trap with a tunable trap location. Appl. Phys. Lett. 109, 221108 (2016).

    Article  ADS  Google Scholar 

  116. Takahashi, H., Kassa, E., Christoforou, C. & Keller, M. Strong coupling of a single ion to an optical cavity. Phys. Rev. Lett. 124, 013602 (2020).

    Article  ADS  Google Scholar 

  117. Crain, S. et al. High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors. Commun. Phys. 2, 97 (2019).

    Article  Google Scholar 

  118. Kielpinski, D., Volin, C., Streed, E. W., Lenzini, F. & Lobino, M. Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15, 5315–5338 (2016).

    Article  ADS  Google Scholar 

  119. Bowler, R., Warring, U., Britton, J. W., Sawyer, B. C. & Amini, J. Arbitrary waveform generator for quantum information processing with trapped ions. Rev. Sci. Instrum. 84, 033108 (2013).

    Article  ADS  Google Scholar 

  120. Johnson, K. G. et al. Active stabilization of ion trap radiofrequency potentials. Rev. Sci. Instrum. 87, 053110 (2016).

    Article  ADS  Google Scholar 

  121. Siverns, J. D., Simkins, L. R., Weidt, S. & Hensinger, W. K. On the application of radio frequency voltages to ion traps via helical resonators. Appl. Phys. B 107, 921–934 (2012).

    Article  ADS  Google Scholar 

  122. Gandolfi, D., Niedermayr, M., Kumph, M., Brownnutt, M. & Blatt, R. Compact radio-frequency resonator for cryogenic ion traps. Rev. Sci. Instrum. 83, 084705 (2012).

    Article  ADS  Google Scholar 

  123. Detti, A., De Pas, M., Duca, L., Perego, E. & Sias, C. A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps. Rev. Sci. Instrum. 90, 023201 (2019).

    Article  ADS  Google Scholar 

  124. Daniel, L., Sullivan, C. R. & Sanders, S. R. Design of microfabricated inductors. IEEE Trans. Power Electron. 14, 709–723 (1999).

    Article  ADS  Google Scholar 

  125. Landman, B. S. & Russo, R. L. On a pin versus block relationship for partitions of logic graphs. IEEE Trans. Comput. C 20, 1469–1479 (1971).

    Article  Google Scholar 

  126. Franke, D. P., Clarke, J. S., Vandersypen, L. M. K. & Veldhorst, M. Rent’s rule and extensibility in quantum computing. Microprocess. Microsyst. 67, 1–7 (2019).

    Article  Google Scholar 

  127. Coyne, D. LIGO vacuum compatible materials list. LIGO Doc. E960050-v13, 1–15 (2014).

  128. Murali, S. & Srikanth, N. Acid decapsulation of epoxy molded IC. IEEE Trans. Electron. Packag. Manuf. 29, 179–183 (2006).

    Article  Google Scholar 

  129. Conway Lamb, I. D. et al. A FPGA-based instrumentation platform for use at deep cryogenic temperatures. Rev. Sci. Instrum. 87, 1–8 (2016).

    Google Scholar 

  130. Li, J., Mattila, T. & Vuorinen, V. in Handbook of Silicon Based MEMS Materials and Technologies 2nd edition, 744–763 (Elsevier, 2015).

  131. Reinert, W., Kulkarni, A., Vuorinen, V. & Merz, P. in Handbook of Silicon Based MEMS Materials and Technologies 2nd edition, 626–639 (Elsevier, 2015).

  132. Henttinen, K. & Suni, T. in Handbook of Silicon Based MEMS Materials and Technologies 2nd edition, 591–598 (Elsevier, 2015).

  133. Lapadatu, A. C. & Jakobsen, H. in Handbook of Silicon Based MEMS Materials and Technologies 2nd Edition, 599–610 (Elsevier, 2015).

  134. Colgan, E. G. et al. A practical implementation of silicon microchannel coolers for high power chips. IEEE Trans. Compon. Packag. Technol. 30, 218–225 (2007).

    Article  Google Scholar 

  135. Riddle, R. A. & Bernhardt, A. F. The microchannel heatsink with liquid nitrogen cooling. High Heat Flux Eng. 1739, 51–59 (1993).

    Article  ADS  Google Scholar 

  136. Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058 (1964).

    Article  ADS  Google Scholar 

  137. Sebastiano, F. et al. Cryogenic CMOS interfaces for quantum devices. In 7th IEEE International Workshop on Advances in Sensors Interfaces (IWASI), 59–62 (IEEE, 2017).

  138. Pauka, S. J. et al. A cryogenic interface for controlling many qubits. Preprint at https://arXiv.org/abs/1912.01299 (2019).

  139. Jun, H. et al. HBM (high bandwidth memory) DRAM technology and architecture. In IEEE 9th International Memory Workshop (IMW) 2–5, (IEEE, 2017).

  140. Dixit, P. & Henttinen, K. Via technologies for MEMS. In Handbook of Silicon Based MEMS Materials and Technologies 2nd edition, 694–712 (Elsevier, 2015).

  141. Tan, T. R. et al. Multi-element logic gates for trapped-ion qubits. Nature 528, 380–383 (2015).

    Article  ADS  Google Scholar 

  142. Inlek, I. V., Crocker, C., Lichtman, M., Sosnova, K. & Monroe, C. Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett. 118, 1–5 (2017).

    Article  Google Scholar 

  143. Muralidharan, S., Santra, S., Jiang, L., Monroe, C. & Malinovsky, V. S. Quantum repeaters based on two-species trapped ions. In 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM) 109 (IEEE, 2018).

  144. Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    Article  ADS  Google Scholar 

  145. Bruzewicz, C. D., McConnell, R., Stuart, J., Sage, J. M. & Chiaverini, J. Dual-species, multi-qubit logic primitives for Ca+/Sr+ trapped-ion crystals. NPJ Quantum Inf. 5, 102 (2019).

    Article  ADS  Google Scholar 

  146. Arrington, C. L. et al. Micro-fabricated stylus ion trap. Rev. Sci. Instrum. https://doi.org/10.1063/1.4817304 (2013).

  147. Shaikh, F. A. & Ozakin, A. Stability analysis of ion motion in asymmetric planar ion traps. J. Appl. Phys. 112, 074904 (2012).

    Article  ADS  Google Scholar 

  148. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 11 (2000).

    Article  Google Scholar 

  149. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  150. Ballance, T. G. et al. A short response time atomic source for trapped ion experiments. Rev. Sci. Instrum. 89, 1–5 (2018).

    Article  Google Scholar 

  151. Johanning, M. et al. Resonance-enhanced isotope-selective photoionization of YbI for ion trap loading. Appl. Phys. B 103, 327–338 (2011).

    Article  ADS  Google Scholar 

  152. Stenholm, S. The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986).

    Article  ADS  Google Scholar 

  153. Mount, E. et al. Single qubit manipulation in a microfabricated surface electrode ion trap. New J. Phys. 15, 093018 (2013).

    Article  ADS  Google Scholar 

  154. Neuhauser, W., Hohenstatt, M., Toschek, P. E. & Dehmelt, H. Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137–1140 (1980).

    Article  ADS  Google Scholar 

  155. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. Prestage, J. D., Dick, G. J. & Maleki, L. New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013–1017 (1989).

    Article  ADS  Google Scholar 

  157. Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493–6501 (1992).

    Article  ADS  Google Scholar 

  158. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article  ADS  Google Scholar 

  159. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).

    Article  ADS  Google Scholar 

  160. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 1–4 (2011).

    Article  Google Scholar 

  161. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    Article  ADS  Google Scholar 

  162. Friis, N. et al. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 021012 (2018).

    Google Scholar 

  163. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 1689–1699 (1998).

    Article  Google Scholar 

  164. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

    Article  ADS  Google Scholar 

  165. Madsen, M. J., Hensinger, W. K., Stick, D., Rabchuk, J. & Monroe, N. Planar ion trap geometry for microfabrication. Appl. Phys. B 78, 639–651 (2004).

    Article  ADS  Google Scholar 

  166. Dubessy, R., Coudreau, T. & Guidoni, L. Electric field noise above surfaces: a model for heating-rate scaling law in ion traps. Phys. Rev. A 80, 1–4 (2009).

    Article  Google Scholar 

  167. Safavi-Naini, A., Rabl, P., Weck, P. F. & Sadeghpour, H. R. Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 1–7 (2011).

    Google Scholar 

  168. DeVoe, R. G. & Kurtsiefer, C. Experimental study of anomalous heating and trap instabilities in a microscopic Ba-137 ion trap. Phys. Rev. A 65, 8 (2002).

    Google Scholar 

  169. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 1–4 (2006).

    Article  Google Scholar 

  170. Brownnutt, M., Kumph, M., Rabl, P. & Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419 (2015).

    Article  ADS  Google Scholar 

  171. Kumph, M., Henkel, C., Rabl, P., Brownnutt, M. & Blatt, R. Electric-field noise above a thin dielectric layer on metal electrodes. New J. Phys. 18, 023020 (2016).

    Article  ADS  Google Scholar 

  172. Wang, S. X. et al. Superconducting microfabricated ion traps. Appl. Phys. Lett. 97, 244102 (2010).

  173. Grounds, A. Cryogenic Technologies for Scalable Trapped Ion Quantum Computing. PhD thesis, Univ. Sussex (2018).

  174. Sedlacek, J. A. et al. Distance scaling of electric-field noise in a surface-electrode ion trap. Phys. Rev. A 97, 020302 (2018).

    Article  ADS  Google Scholar 

  175. Boldin, I. A., Kraft, A. & Wunderlich, C. Measuring anomalous heating in a planar ion trap with variable ion–surface separation. Phys. Rev. Lett. 120, 23201 (2018).

    Article  ADS  Google Scholar 

  176. Bruzewicz, C. D., Sage, J. M. & Chiaverini, J. Measurement of ion motional heating rates over a range of trap frequencies and temperatures. Phys. Rev. A 91, 1–6 (2015).

    Article  Google Scholar 

  177. McConnell, R., Bruzewicz, C., Chiaverini, J. & Sage, J. Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning. Phys. Rev. A 92, 1–5 (2015).

    Article  Google Scholar 

  178. Eltony, A. M., Park, H. G., Wang, S. X., Kong, J. & Chuang, I. L. Motional heating in a graphene-coated ion trap. Nano Lett. 14, 5712–5716 (2014).

    Article  ADS  Google Scholar 

  179. Hite, D. A. et al. Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity. MRS Adv. 2, 2189–2197 (2017).

    Article  Google Scholar 

  180. Kim, E. et al. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments. Phys. Rev. A 95, 1–8 (2017).

    Google Scholar 

  181. Sedlacek, J. A. et al. Evidence for multiple mechanisms underlying surface electric-field noise in ion traps. Phys. Rev. A 98, 063430 (2018).

    Article  ADS  Google Scholar 

  182. Noel, C. et al. Electric-field noise from thermally activated fluctuators in a surface ion trap. Phys. Rev. A 99, 063427 (2019).

    Article  ADS  Google Scholar 

  183. Ray, K. G., Rubenstein, B. M., Gu, W. & Lordi, V. Van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates. New J. Phys. 21, 053043 (2019).

    Article  ADS  Google Scholar 

  184. Lakhmanskiy, K. et al. Observation of superconductivity and surface noise using a single trapped ion as a field probe. Phys. Rev. A 99, 023405 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council via the EPSRC Hub in Quantum Computing and Simulation (EP/T001062/1), the UK Quantum Technology hub for Networked Quantum Information Technologies (no. EP/M013243/1), the European Commission’s Horizon-2020 Flagship on Quantum Technologies Project no. 820314 (MicroQC), the US Army Research Office under contract no. W911NF-14-2-0106, the Fonds National de la Recherche Luxembourg (National Research Fund) Project Code 11615035 and the University of Sussex.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Winfried Karl Hensinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Roee Ozeri and the other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

RF nil

Also known as RF null. The minimum energy of the RF pseudopotential, which gives the ion’s position in an RF field.

Hessian matrix

Matrix of second-order partial derivatives, in this case derivatives of the total potential seen by the ion.

Fidelity

The reliability of a certain operation. For a fault-tolerant quantum computer, the fidelity of every single operation must be above the relevant fault-tolerant threshold (99%).

Node

An established fabrication method that uses fixed fabrication methods to create structures. These can be characterized by feature size, materials, voltages and many other aspects.

Pseudopotential

An effective potential that accounts for the ion’s motion in an oscillating electric field.

MEMS

Micro-electro-mechanical systems combine electrical and mechanical features in a fabricated device. The sizes of the features used often make the processing similar to ion traps.

CMOS

Complementary metal–oxide semiconductor is a material structure that is used to make digital logic circuits. This is a mature industry that produces highly reliable structures in high quantities.

Plasma-enhanced chemical vapour deposition

A method of depositing materials through chemical reaction of ionized gases.

Breakdown

The point at which two electrically isolated electrodes become shorted because of a large voltage, often damaging the electrodes in the process.

Sputtering

A method of depositing a variety of materials onto a surface using accelerated ions striking a target of the desired material.

Evaporation

A method of depositing metals onto a surface by evaporating a metal and allowing the resulting flux to coat the surface.

Reactive ion etching

Also known as plasma etching, a method that uses a plasma to directionally etch a material.

CCWs

Current-carrying wires are ion-trap-specific structures that are designed to use currents to generate magnetic fields.

Damascene process

A fabrication process in which a pattern is etched that is subsequently filled (such as with copper). It is then planarized using a chemical mechanical polish. The dual damascene process combines pattern and vertical connections into one fabrication process.

Collection efficiency

The percentage of collected photons that have been emitted by an object.

Numerical aperture

A value that characterizes the solid angle over which a sensor or light source is exposed to an object, in this case an ion. This is a dimensionless quantity.

Die

A cut-out piece of a larger, fabricated wafer. For integrated circuits, a die is typically packaged in epoxy afterwards, making the circuits incompatible with ultra-high-vacuum environments.

Ball-grid array

A method that uses raised metal balls/bumps to attach a die to a circuit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaszko, Z.D., Hong, S., Siegele, M. et al. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat Rev Phys 2, 285–299 (2020). https://doi.org/10.1038/s42254-020-0182-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-0182-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing