Optical trapping and manipulation of nanostructures

Abstract

Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light–matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate — nanoscale — range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The three size ranges of optical trapping.
Figure 2: Basic experimental designs.
Figure 3: Optical manipulation and placement of nanowires.
Figure 4: Plasmonic tweezers.
Figure 5: Photonic force microscope.
Figure 6: Spectroscopy of nanostructures in optical traps.
Figure 7: Nanoparticle levitation and laser cooling.

References

  1. 1

    Poynting, J. H. On the transfer of energy in the electromagnetic field. Phil. Trans. R. Soc. Lond. 175, 343–361 (1884).

  2. 2

    Lebedev, P. Untersuchungen über die druckkräfte des lichtes. Ann. Phys. 311, 433–458 (1901).

  3. 3

    Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).

  4. 4

    Ashkin, A. History of optical trapping and manipulation of small neutral particle, atoms, and molecules. IEEE J. Selected Topics Quant. Electr., 6, 841–856 (2000).

  5. 5

    Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

  6. 6

    Ashkin, A. Atomic-beam deflection by resonance-radiation pressure. Phys. Rev. Lett. 25, 1321–1324 (1970).

  7. 7

    Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

  8. 8

    Cohen-Tannoudji, C. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

  9. 9

    Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–740 (1998).

  10. 10

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

  11. 11

    Foot, C. J. Atomic Physics (Oxford Univ. Press, 2005).

  12. 12

    Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

  13. 13

    Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

  14. 14

    Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

  15. 15

    Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

  16. 16

    Gordon, J. P. Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14–21 (1973).

  17. 17

    Purcell, E. M. & Pennypacker, C. R. Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973).

  18. 18

    Volpe, G., Helden, L., Brettschneider, T., Wehr, J. & Bechinger, C. Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010).

  19. 19

    Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

  20. 20

    Hansen, P. M., Bhatia, V. K. L., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

  21. 21

    Bosanac, L., Aabo, T., Bendix, P. M. & Oddershede, L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 8, 1486–1491 (2008).

  22. 22

    Pelton, M. et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett. 31, 2075–2077 (2006).

  23. 23

    Toussaint, K. C. et al. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Opt. Express 15, 12017–12029 (2007).

  24. 24

    Selhuber-Unkel, C., Zins, I., Schubert, O., Sonnichsen, C. & Oddershede, L. B. Quantitative optical trapping of single gold nanorods. Nano Lett. 8, 2998–3003 (2008).

  25. 25

    Dienerowitz, M., Mazilu, M., Reece, P., Krauss, T. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008).

  26. 26

    Jones, P. H. et al. Rotation detection in light-driven nanorotors. ACS Nano 3, 3077–3084 (2009).

  27. 27

    Tong, L., Miljkovic, V. D. & Käll, M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10, 268–273 (2010).

  28. 28

    Tong, L. et al. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett. 11, 4505–4508 (2011).

  29. 29

    Messina, E. et al. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano 5, 905–913 (2011).

  30. 30

    Ploschner, M., Cizmar, T., Mazilu, M., Di Falco, A. & Dholakia, K. Bidirectional optical sorting of gold nanoparticles. Nano Lett. 12, 1923–1927 (2012).

  31. 31

    Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three-dimensional optical control of individual quantum dots. Nano Lett. 8, 3376–3380 (2008).

  32. 32

    Chen, Y. F. et al. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12, 1633–1637 (2012).

  33. 33

    Tan, S., Lopez, H. A., Cai, C. W. & Zhang, Y. Optical trapping of single-walled carbon nanotubes. Nano Lett. 4, 1415–1419 (2004).

  34. 34

    Maragò, O. M. et al. Optical trapping of carbon nanotubes. Physica E 40, 2347–2351 (2008).

  35. 35

    Maragò, O. M. et al. Femtonewton force sensing with optically trapped nanotubes. Nano Lett. 8, 3211–3216 (2008).

  36. 36

    Rodgers, T. et al. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys. Rev. Lett. 101, 127402 (2008).

  37. 37

    Pauzauskie, P. J., Jamshidi, A., Valley, J. K., Satcher, J. H. & Wu, M. C. Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Appl. Phys. Lett. 95, 113104 (2009).

  38. 38

    Maragò, O. M. et al. Brownian motion of graphene. ACS Nano 4, 7515–7523 (2010).

  39. 39

    Twombly, C. W., Evans, J. S. & Smalyukh, I. I. Optical manipulation of self-aligned graphene flakes in liquid crystals. Opt. Express 21, 1324–1334 (2013).

  40. 40

    Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175–179 (2013).

  41. 41

    Neves, A. A. R. et al. Rotational dynamics of optically trapped nanofibers. Opt. Express 18, 822–830 (2010).

  42. 42

    Agarwal, R. et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005).

  43. 43

    Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

  44. 44

    Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

  45. 45

    Reece, P. J. et al. Combined optical trapping and microphotoluminescence of single InP nanowires. Appl. Phys. Lett. 95, 101109 (2009).

  46. 46

    Irrera, A. et al. Size-scaling in optical trapping of silicon nanowires. Nano Lett. 11, 4879–4884 (2011).

  47. 47

    Reece, P. J. et al. Characterisation of semiconductor nanowires based on optical tweezers. Nano Lett. 11, 2375–2381 (2011).

  48. 48

    Dutto, F. et al. Nonlinear optical response in single alkaline niobate nanowires. Nano Lett. 11, 2517–2521 (2011).

  49. 49

    Wang, F. et al. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett. 13, 1185–1191 (2013).

  50. 50

    Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett. 30, 1009–1011 (2005).

  51. 51

    Volpe, G., Quidant, R., Badenes, G. & Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 96, 238101 (2006).

  52. 52

    Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).

  53. 53

    Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 183604 (2008).

  54. 54

    Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

  55. 55

    Righini, M. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett. 9, 3387–3391 (2009).

  56. 56

    Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2011).

  57. 57

    Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Commun. 2, 469 (2011).

  58. 58

    Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

  59. 59

    Ikin, L., Carberry, D. M., Gibson, G. M., Padgett, M. J. & Miles, M. J. Assembly and force measurement with SPM-like probes in holographic optical tweezers. New J. Phys. 11, 023012 (2009).

  60. 60

    Pollard, M. R. et al. Optically trapped probes with nanometerscale tips for femto-newton force measurement. New J. Phys 12, 113056 (2010).

  61. 61

    Phillips, D. B. et al. Force sensing with a shaped dielectric microtool. Europhys. Lett. 99, 58004 (2012).

  62. 62

    Phillips, D. B. et al. Surface imaging using holographic optical tweezers. Nanotechnology 22, 285503 (2011).

  63. 63

    Olof, S. N. et al. Measuring nanoscale forces with living probes. Nano Lett. 12, 6018–6023 (2012).

  64. 64

    Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679 (2012).

  65. 65

    Petrov, D. V. Raman spectroscopy of optically trapped particles. J. Opt. A: Pure Appl. Opt. 9, S139–S156 (2007).

  66. 66

    Ajito, K. & Torimitsu, K. Single nanoparticle trapping using a Raman tweezers microscope. Appl. Spectrosc. 56, 541–544 (2002).

  67. 67

    Bjerneld, E. J. et al. Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett. 3, 593–596 (2003).

  68. 68

    Svedberg, F. et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 6, 2639–2641 (2006).

  69. 69

    Balint, S. et al. Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J. Phys. Chem. C 113, 17724–17729 (2009).

  70. 70

    Rao, S. et al. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett. 96, 213701 (2010).

  71. 71

    Messina, E. et al. Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C 115, 5115–5122 (2011).

  72. 72

    Wang, F. et al. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett. 11, 4149–4153 (2011).

  73. 73

    Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

  74. 74

    Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

  75. 75

    Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).

  76. 76

    Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

  77. 77

    Draine, B. T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988).

  78. 78

    Albaladejo, S., Marqués, M. I., Laroche, M. & Sáenz, J. J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 113602 (2009).

  79. 79

    Borghese, F., Denti, P. & Saija, R. Scattering from Model Nonspherical Particles (Springer, 2007).

  80. 80

    Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216 (2007).

  81. 81

    Mishchenko, M. I. Radiation force caused by scattering, absorption, and emission of light by nonspherical particles. J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).

  82. 82

    Nieminen, T. A., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Calculation and optical measurement of laser trapping forces on non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer 70, 627–637 (2001).

  83. 83

    Saija, R., Iatí, M. A., Giusto, A., Denti, P. & Borghese, F. Transverse components of the radiation force on non-spherical particles in the T-matrix formalism. J. Quant. Spectrosc. Radiat. Transfer 94, 163–179 (2005).

  84. 84

    Borghese, F., Denti, P., Saija, R. & Iatì, M. A. Optical trapping of non-spherical particles in the T-matrix formalism. Opt. Express 15, 11984–11998 (2007).

  85. 85

    Borghese, F., Denti, P., Saija, R. & Iatì, M. A. Radiation torque on non-spherical particles in the transition matrix formalism. Opt. Express 14, 9508–9521 (2006).

  86. 86

    Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).

  87. 87

    Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011).

  88. 88

    Saija, R., Denti, P., Borghese, F., Maragó, O. M. & Iatì, M. A. Optical trapping calculations for metal nanoparticles: Comparison with experimental data for Au and Ag spheres. Opt. Express 17, 10231–10241 (2009).

  89. 89

    Borghese, F., Denti, P., Saija, R., Iatì, M. A. & Maragó, O. M. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett. 100, 163903 (2008).

  90. 90

    Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

  91. 91

    Simpson, S. H. & Hanna, S. Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. Opt. Express 19, 16526–16541 (2011).

  92. 92

    Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R., Rubinsztein-Dunlop, H. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).

  93. 93

    Bareil, P. B. & Sheng, Y. Angular and position stability of a nanorod trapped in an optical tweezers. Opt. Express 18, 26388–26398 (2010).

  94. 94

    Wright, W. H., Sonek, G. J. & Berns, M. W. Radiation trapping forces on microspheres with optical tweezers. Appl.Phys. Lett. 63, 715–717 (1993).

  95. 95

    Meier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

  96. 96

    Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).

  97. 97

    Kyrsting, A., Bendix, P. M., Stamou, D. G. & Oddershede, L. B. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011).

  98. 98

    Yan, Z. et al. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett. 12, 5155–5161 (2012).

  99. 99

    Zhan, Q. Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377–3382 (2004).

  100. 100

    Volpe, G., Singh, G. P. & Petrov, D. Optical tweezers with cylindrical vector beams produced by optical fibers. Proc. SPIE 5514, 283–292 (2004).

  101. 101

    Skelton, S. E. et al. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett. 38, 28–30 (2013).

  102. 102

    Donato, M. G. et al. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 37, 3381–3383 (2012).

  103. 103

    Iglesias, I. & Sáenz, J. J. Light spin forces in optical traps: comment on “Trapping metallic Rayleigh particles with radial polarization”. Opt. Express 20, 2832–2834 (2012).

  104. 104

    Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

  105. 105

    Ma, H., Bendix, P. M. & Oddershede, L. B. Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett. 12, 3954–3960 (2012).

  106. 106

    Burns, M. M., Fournier, J-M. & Golovchenko, J. A. Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989).

  107. 107

    Burns, M. M., Fournier, J-M. & Golovchenko, J. A. Optical matter: Crystallization and binding in intense optical fields. Science 249, 749–754 (1990).

  108. 108

    Dholakia, K. & Zemánek, P. Colloquium: Gripped by light: Optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010).

  109. 109

    Demergis, V. & Florin, E-L. Ultrastrong optical binding of metallic nanoparticles. Nano Lett. 12, 5756–5760 (2012).

  110. 110

    Yan, Z., Shah, R. A., Chado, G., Gray, S. K., Pelton, M. & Scherer, N. F. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7, 1790–1802 (2013).

  111. 111

    Slama-Eliau, B. N. & Raithel, G. Three-dimensional arrays of submicron particles generated by a four-beam optical lattice. Phys. Rev. E 83, 051406 (2011).

  112. 112

    Albaladejo, S., Sáenz, J. J. & Marqués, M. I. Plasmonic nanoparticle chain in a light field: A resonant optical sail. Nano Lett. 11, 4597–4600 (2011).

  113. 113

    Dapasse, F. & Vigoureux, J. M. Optical binding force between two Rayleigh particles. J. Phys. D: Appl. Phys. 27, 914–919 (1994).

  114. 114

    Bonaccorso, F. et al. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem. C 114, 17267–17285 (2010).

  115. 115

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

  116. 116

    Lee, W. M., Reece, P. J., Marchington, R. F., Metzger, N. K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nature Protoc. 2, 3226–3238 (2007).

  117. 117

    Donato, M. G. et al. Optical trapping of porous silicon nanoparticles. Nanotechnology 22, 505704 (2011).

  118. 118

    Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).

  119. 119

    Lee, S-W., Jo, G., Lee, T. & Lee, Y-G. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers. Opt. Express 17, 17491–17501 (2009).

  120. 120

    Mack, A. H., Trias, M. K. & Mochrie, S. G. J. Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors. Rev. Sci. Instrumen. 80, 016101 (2009).

  121. 121

    Dufresne, E. R. & Grier, D. G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrumen. 69, 1974–1977 (1998).

  122. 122

    Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

  123. 123

    Mogensen, P. C. & Glückstad, J. Dynamic array generation and pattern formation for optical tweezers. Opt. Commun. 175, 75–81 (2000).

  124. 124

    Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

  125. 125

    Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A. & Grier, D. G. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrumen. 72, 1810–1816 (2001).

  126. 126

    Castelino, K., Satyanarayana, S. & Sitti, M. Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica 23, 435–439 (2005).

  127. 127

    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

  128. 128

    Martin, O. J. F. & Girard, C. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

  129. 129

    Okamoto, K. & Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534–4537 (1999).

  130. 130

    Garcés-Chávez, V. et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).

  131. 131

    Huang, L., Maerkl, S. J. & Martin, O. J. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 17, 6018–6024 (2009).

  132. 132

    Volpe, G., Volpe, G. & Quidant, R. Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt. Express 19, 3612–3618 (2011).

  133. 133

    Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993).

  134. 134

    Florin, E-L., Pralle, A., Horber, J. K. H. & Stelzer, E. H. K. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol. 119, 202–211 (1997).

  135. 135

    Rohrbach, A., Tischer, C., Neumayer, D., Florin, E-L. & Stelzer, E. H. K. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrumen. 75, 2197–2210 (2004).

  136. 136

    Pralle, A., Prummer, M., Florin, E-L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high resolution particle tracking for optical tweezers by forward light scattering. Microsc. Res. Tech. 44, 378–386 (1999).

  137. 137

    Tischer, C. et al. Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79, 3878–3880 (2001).

  138. 138

    Meiners, J-C. & Quake, S. R. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett. 82, 2211–2214 (1999).

  139. 139

    Berg-Sorensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrumen. 75, 594–612 (2004).

  140. 140

    Brettschneider, T., Volpe, G., Helden, L., Wehr, J. & Bechinger, C. Force measurement in the presence of Brownian noise: Equilibrium distribution method versus drift method. Phys. Rev. E 83, 041113 (2011).

  141. 141

    Kress, H., Stelzer, E. H. K. & Rohrbach, A. Tilt angle dependent three-dimensional-position detection of a trapped cylindrical particle in a focused laser beam. Appl. Phys. Lett. 84, 4271–4273 (2004).

  142. 142

    Ito, S., Yoshikawa, H. & Masuhara, H. Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates. Appl. Phys. Lett. 78, 2566–2568 (2001).

  143. 143

    Guffey, M. J. & Scherer, N. F. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 10, 4302–4308 (2010).

  144. 144

    Nedev, S., Urban, A. S., Lutich, A. A. & Feldmann, J. Optical force stamping lithography. Nano Lett. 11, 5066–5070 (2011).

  145. 145

    Woerdemann, M. et al. Dynamic and reversible organization of Zeolite L crystals induced by holographic optical tweezers. Adv. Mater. 22, 4176–4179 (2010).

  146. 146

    McLeod, E. & Arnold, C. B. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech. 3, 413–417 (2008).

  147. 147

    Tsai, Y-C., Leitz, K-H., Fardel, R., Otto, A., Schmidt, M. & Arnold, C. B. Parallel optical trap assisted nanopatterning on rough surfaces. Nanotechnology 23, 165304 (2012).

  148. 148

    Prikulis, J. et al. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 4, 115–118 (2004).

  149. 149

    Ohlinger, A., Nedev, S., Lutich, A. A. & Feldman, J. Optothermal escape of plasmonically coupled silver nanoparticles from a three dimensional optical trap. Nano Lett. 11, 1770–1774 (2011).

  150. 150

    Xie, C. G. et al. Near-infrared raman spectroscopy of single optically trapped biological cells. Opt. Lett. 27, 249–251 (2002).

  151. 151

    Huang, Y., Duan, X. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

  152. 152

    O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

  153. 153

    Tan, P. et al. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

  154. 154

    Hertel, T. et al. Spectroscopy of single-and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).

  155. 155

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2007).

  156. 156

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech. 8, 235–246 (2013).

  157. 157

    Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

  158. 158

    Prodan, E. et al. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  159. 159

    Kneipp, K., Moskovits, M. & Kneipp, H. Surface-Enhanced Raman Scattering (Springer, 2006).

  160. 160

    Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

  161. 161

    McDougall, C., Stevenson, D. J., Brown, C. T. A., Gunn-Moore, F. & Dholakia, K. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophotonics 2, 736–743 (2009).

  162. 162

    Stevenson, D. et al. Femtosecond optical transfection of cells: viability and efficiency. Opt. Express 14, 7125–7133 (2006).

  163. 163

    Cleland, A. Optomechanics: Photons refrigerating phonons. Nature Phys. 5, 458–460 (2009).

  164. 164

    Kane, B. E. Levitated spinning graphene flakes in an electric quadrupole ion trap. Phys. Rev. B 82, 115441 (2010).

  165. 165

    Hernandez, Y. et al. High-yield production of graphene by liquid phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

  166. 166

    Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

  167. 167

    Ridolfo, A. et al. Fano-doppler laser cooling of hybrid nanostructures. ACS Nano 5, 7354–7361 (2011).

  168. 168

    Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

  169. 169

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

Download references

Acknowledgements

We thank F. Bonaccorso, B. Fazio, C. J. Foot, M. G. Donato, M. A. Iatì, A. Irrera, R. Saija, S. Savasta and G. Volpe for discussions. We acknowledge funding from FP7-HEALTH-F5-2009-241818 NANOANTENNA, MPNS COST Action 1205 “Advances in Optofluidics: Integration of Optical Control and Photonics with Microfluidics”, the Leverhulme Trust, the Scientific and Technological Research Council of Turkey (TUBITAK) under Grants 111T758 and 112T235, Marie Curie Career Integration Grant (MC-CIG) under Grant PCIG11 GA-2012-321726, COST Action IC1208, the Royal Society, the European Research Council Grant NANOPOTS, EU Grants RODIN, MEM4WIN, and Graphene Flagship, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/G042357/1 and Nokia Research Centre, Cambridge.

Author information

Correspondence to Onofrio M. Maragò or Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maragò, O., Jones, P., Gucciardi, P. et al. Optical trapping and manipulation of nanostructures. Nature Nanotech 8, 807–819 (2013) doi:10.1038/nnano.2013.208

Download citation

Further reading