Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–orbit-driven ferromagnetic resonance

Abstract

Ferromagnetic resonance is the most widely used technique for characterizing ferromagnetic materials1. However, its use is generally restricted to wafer-scale samples or specific micro-magnetic devices, such as spin valves, which have a spatially varying magnetization profile and where ferromagnetic resonance can be induced by an alternating current owing to angular momentum transfer2,3,4. Here we introduce a form of ferromagnetic resonance in which an electric current oscillating at microwave frequencies is used to create an effective magnetic field in the magnetic material being probed, which makes it possible to characterize individual nanoscale samples with uniform magnetization profiles. The technique takes advantage of the microscopic non-collinearity of individual electron spins arising from spin–orbit coupling and bulk or structural inversion asymmetry in the band structure of the sample5,6. We characterize lithographically patterned (Ga,Mn)As and (Ga,Mn)(As,P) nanoscale bars, including broadband measurements of resonant damping as a function of frequency, and measurements of anisotropy as a function of bar width and strain. In addition, vector magnetometry on the driving fields reveals contributions with the symmetry of both the Dresselhaus and Rashba spin–orbit interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the experiment and setup.
Figure 2: Spin–orbit-driven ferromagnetic resonance.
Figure 3: Characterization of the driving field in both (Ga,Mn)As and (Ga,Mn)(As,P) devices.
Figure 4: SO-FMR on devices patterned from different materials and with various sizes.

Similar content being viewed by others

References

  1. Vonsovskıˇ, S. V. Ferromagnetic Resonance (Pergamon, 1966).

  2. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  CAS  Google Scholar 

  3. Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).

    Article  CAS  Google Scholar 

  4. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  5. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  6. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  7. Aronov, A. G. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field. JETP Lett. 50, 431 (1989).

    Google Scholar 

  8. Edelstein, V. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  9. Inoue, J., Bauer, G. E. W. & Molenkamp, L. W. Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas. Phys. Rev. B 67, 033104 (2003).

    Article  Google Scholar 

  10. Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    Article  CAS  Google Scholar 

  11. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  12. Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 88, 134403 (2009).

    Article  Google Scholar 

  13. Costache, M. V., Watts, S. M., Sladkov, M., van der Wal, C. H. & van Wees, B. J. Large cone angle magnetization precession of an individual nanopatterned ferromagnet with dc electrical detection. Appl. Phys. Lett. 89, 232115 (2006).

    Article  Google Scholar 

  14. Costache, M. V., Sladkov, M., van der Wal, C. H. & van Wees, B. J. On-chip detection of ferromagnetic resonance of a single submicron Permalloy strip. Appl. Phys. Lett. 89, 192506 (2006).

    Article  Google Scholar 

  15. Goennenwein, S. T. B. et al. Electrically detected ferromagnetic resonance. Appl. Phys. Lett. 90, 162507 (2007).

    Article  Google Scholar 

  16. Mecking, N., Gui, Y. S. & Hu, C-M. Microwave photovoltage and photoresistance effects in ferromagnetic microstrips. Phys. Rev. B 76, 224430 (2007).

    Article  Google Scholar 

  17. Hui, X. et al. Electric detection of ferromagnetic resonance in single crystal iron film. Appl. Phys. Lett. 93, 232502 (2008).

    Article  Google Scholar 

  18. Yamaguchi, A. et al. Broadband ferromagnetic resonance of Ni81Fe19 wires using a rectifying effect. Phys. Rev. B 78, 104401 (2008).

    Article  Google Scholar 

  19. Silver, M., Batty, W., Ghiti, A. & O'Reilly, E. P. Strain-induced valence-subband splitting in III–V semiconductors. Phys. Rev. B 46, 6781 (1992).

    Article  CAS  Google Scholar 

  20. Zemen, J., Kučera, J., Olejník, K. & Jungwirth, T. Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment. Phys. Rev. B 80, 155203 (2009).

    Article  Google Scholar 

  21. Rushforth, A. W. et al. Molecular beam epitaxy grown (Ga,Mn)(As,P) with perpendicular to plane magnetic easy axis. J. Appl. Phys. 104, 073908 (2008).

    Article  Google Scholar 

  22. Hümpfner, S. et al. Lithographic engineering of anisotropies in (Ga,Mn)As. Appl. Phys. Lett. 90, 102102 (2007).

    Article  Google Scholar 

  23. Wunderlich, J. et al. Local control of magnetocrystalline anisotropy in (Ga,Mn)As microdevices: demonstration in current-induced switching. Phys. Rev. B 76, 054424 (2007).

    Article  Google Scholar 

  24. Wenisch, J. et al. Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation. Phys. Rev. Lett. 99, 077201 (2007).

    Article  CAS  Google Scholar 

  25. Hoffmann, F. et al. Mapping the magnetic anisotropy in (Ga,Mn)As nanostructures. Phys. Rev. B 80, 054417 (2009).

    Article  Google Scholar 

  26. Khazen, K. et al. Anisotropic magnetization relaxation in ferromagnetic Ga1−xMnxAs thin films. Phys. Rev. B 78, 195210 (2008).

    Article  Google Scholar 

  27. Liu, X. & Furdyna, J. K. Ferromagnetic resonance in Ga1−xMnxAs dilute magnetic semiconductors. J. Phys. Condens. Matter. 18, R245–R279 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with I. Garate, A. H. MacDonald and L. Rokhinson and support from EU grants FP7-214499 NAMASTE, FP7-215368 SemiSpinNet, ERC Advanced Grant, from Czech Republic grants AV0Z10100521, KAN400100652, LC510, KJB100100802 and Praemium Academiae. D.F. acknowledges support from the Cambridge Overseas Trusts and Hitachi Cambridge Laboratory. A.J.F. acknowledges the support of a Hitachi research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.F. and A.J.F. carried out device fabrication. D.F., H.K., J.W. and A.J.F. conducted experiments and carried out data analysis. K.V., L.P.Z. and T.J. developed the theory. R.P.C., A.C. and B.L.G. provided materials. D.F., A.J.F., T.J., L.P.Z., K.V., H.K. and J.W. all contributed to writing the manuscript. A.J.F. planned the project.

Corresponding author

Correspondence to A. J. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, D., Kurebayashi, H., Wunderlich, J. et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech 6, 413–417 (2011). https://doi.org/10.1038/nnano.2011.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing