Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling protein translocation through nanopores with bio-inspired fluid walls

Abstract

Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, inspired by the olfactory sensilla of insect antennae, we show that coating nanopores with a fluid lipid bilayer tailors their surface chemistry and allows fine-tuning and dynamic variation of pore diameters in subnanometre increments. Incorporation of mobile ligands in the lipid bilayer conferred specificity and slowed the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. Lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of their translocation time, volume, charge, shape and ligand affinity, different proteins were identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bio-inspired synthetic nanopores with bilayer-coated fluid walls.
Figure 2: Capture, affinity-dependent pre-concentration and translocation of specific proteins after binding to ligands on mobile lipid anchors.
Figure 3: Controlling the translocation times, td, of single lipid-anchored proteins by the viscosity of the bilayer coating and distinguishing proteins by their most probable td values.
Figure 4: Distribution of ΔI values and corresponding molecular volumes and shape factors of individual proteins translocating through bilayer-coated nanopores with biotinylated lipids.
Figure 5: Comparison of experimental and theoretical values of charge-dependent translocation times of streptavidin.
Figure 6: Bilayer-coated nanopores resist clogging and enable monitoring of the aggregation of Aβ peptides.

Similar content being viewed by others

References

  1. Sexton, L. T. et al. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144–13152 (2007).

    Article  CAS  Google Scholar 

  2. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnol. 18, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  3. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  4. Siwy, Z. et al. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005).

    Article  CAS  Google Scholar 

  5. Ding, S., Gao, C. L. & Gu, L. Q. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem. 81, 6649–6655 (2009).

    Article  CAS  Google Scholar 

  6. Uram, J. D., Ke, K., Hunt, A. J. & Mayer, M. Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small 2, 967–972 (2006).

    Article  CAS  Google Scholar 

  7. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  8. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotech. 2, 243–248 (2007).

    Article  CAS  Google Scholar 

  9. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotech. 5, 160–165 (2010).

    Article  CAS  Google Scholar 

  10. Uram, J. D., Ke, K., Hunt, A. J. & Mayer, M. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem. Int. Ed. 45, 2281–2285 (2006).

    Article  CAS  Google Scholar 

  11. Robertson, J. W. F. et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007).

    Article  CAS  Google Scholar 

  12. Han, A. P. et al. Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal. Chem. 80, 4651–4658 (2008).

    Article  CAS  Google Scholar 

  13. Ito, T., Sun, L. & Crooks, R. M. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter. Anal. Chem. 75, 2399–2406 (2003).

    Article  CAS  Google Scholar 

  14. Talaga, D. S. & Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  Google Scholar 

  15. Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).

    Article  CAS  Google Scholar 

  16. Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nature Nanotech. 2, 718–724 (2007).

    Article  CAS  Google Scholar 

  17. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech. 4, 265–270 (2009).

    Article  CAS  Google Scholar 

  18. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  19. Nakane, J. J., Akeson, M. & Marziali, A. Nanopore sensors for nucleic acid analysis. J. Phys. Condens. Matter 15, R1365–R1393 (2003).

    Article  CAS  Google Scholar 

  20. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  21. Martin, C. R. & Siwy, Z. S. Learning nature's way: biosensing with synthetic nanopores. Science 317, 331–332 (2007).

    Article  CAS  Google Scholar 

  22. Movileanu, L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol. 27, 333–341 (2009).

    Article  CAS  Google Scholar 

  23. Majd, S. et al. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 21, 439–476 (2010).

    Article  CAS  Google Scholar 

  24. Hou, X. et al. A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 131, 7800–7805 (2009).

    Article  CAS  Google Scholar 

  25. Yameen, B. et al. Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J. Am. Chem. Soc. 131, 2070–2071 (2009).

    Article  CAS  Google Scholar 

  26. Sexton, L. T. et al. An adsorption-based model for pulse duration in resistive-pulse protein sensing. J. Am. Chem. Soc. 132, 6755–6763 (2010).

    Article  CAS  Google Scholar 

  27. Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  28. Uram, J. D., Ke, K. & Mayer, M. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2, 857–872 (2008).

    Article  CAS  Google Scholar 

  29. Fologea, D., Ledden, B., David, S. M. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

    Article  Google Scholar 

  30. Chun, K. Y., Mafe, S., Ramirez, P. & Stroeve, P. Protein transport through gold-coated, charged nanopores: effects of applied voltage. Chem. Phys. Lett. 418, 561–564 (2006).

    Article  CAS  Google Scholar 

  31. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associaties, 2001).

    Google Scholar 

  32. Steinbrecht, R. A. Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26, 229–245 (1997).

    Article  Google Scholar 

  33. Zacharuk, R. Y. Antennae and sensilla, in Comparative Insect Physiology Chemistry and Pharmacology (eds Kerkut, G. A. & Gilbert, L. I.) (Pergamon Press, 1985).

    Google Scholar 

  34. Locke, M. Permeability of insect cuticle to water and lipids. Science 147, 295–298 (1965).

    Article  Google Scholar 

  35. Nilsson, J., Lee, J. R. I., Ratto, T. V. & Letant, S. E. Localized functionalization of single nanopores. Adv. Mater. 18, 427–431 (2006).

    Article  CAS  Google Scholar 

  36. Wang, G. L., Zhang, B., Wayment, J. R., Harris, J. M. & White, H. S. Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 128, 7679–7686 (2006).

    Article  CAS  Google Scholar 

  37. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    Article  CAS  Google Scholar 

  38. Watts, T. H., Brian, A. A., Kappler, J. W., Marrack, P. & McConnell, H. M. Antigen presentation by supported planar membranes containing affinity-purified I-Ad. Proc. Natl Acad. Sci. USA 81, 7564–7568 (1984).

    Article  CAS  Google Scholar 

  39. Cremer, P. S. & Boxer, S. G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 103, 2554–2559 (1999).

    Article  CAS  Google Scholar 

  40. Reimhult, E., Hook, F. & Kasemo, B. Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19, 1681–1691 (2003).

    Article  CAS  Google Scholar 

  41. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  42. Miller, C. E., Majewski, J., Gog, T. & Kuhl, T. L. Characterization of biological thin films at the solid–liquid interface by X-ray reflectivity. Phys. Rev. Lett. 94, 238104 (2005).

  43. Bayerl, T. M. & Bloom, M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads—a new vesicular model system studied by 2H nuclear magnetic resonance. Biophys. J. 58, 357–362 (1990).

    Article  CAS  Google Scholar 

  44. Caffrey, M. & Hogan, J. LIPIDAT: a database of lipid phase transition temperatures and enthalpy changes. DMPC data subset analysis. Chem. Phys. Lipids 61, 1–109 (1992).

    Article  CAS  Google Scholar 

  45. Tokumasu, F., Jin, A. J. & Dvorak, J. A. Lipid membrane phase behaviour elucidated in real time by controlled environment atomic force microscopy. J. Electron Microsc. 51, 1–9 (2002).

    Article  CAS  Google Scholar 

  46. Schuy, S. & Janshoff, A. Thermal expansion of microstructured DMPC bilayers quantified by temperature-controlled atomic force microscopy. ChemPhysChem 7, 1207–1210 (2006).

    Article  CAS  Google Scholar 

  47. Gibbs, A. G. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48, 391–400 (2002).

    Article  CAS  Google Scholar 

  48. Adam, G. & Delbrueck, M. Reduction of dimensionality in biological diffusion processes, in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (W. H. Freeman and Co., 1968).

    Google Scholar 

  49. Gambin, Y. et al. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl Acad. Sci. USA 103, 2098–2102 (2006).

    Article  CAS  Google Scholar 

  50. Grover, N. B., Naaman, J., Ben-sasson, S., Doljansk, F. & Nadav, E. Electrical sizing of particles in suspensions. 2. Experiments with rigid spheres. Biophys. J. 9, 1415–1425 (1969).

    Article  CAS  Google Scholar 

  51. Grover, N. B., Naaman, J., Ben-sasson, S. & Doljansk, F. Electrical sizing of particles in suspensions. I.Theory. Biophys. J. 9, 1398–1414 (1969).

    Article  CAS  Google Scholar 

  52. Neish, C. S., Martin, I. L., Henderson, R. M. & Edwardson, J. M. Direct visualization of ligand–protein interactions using atomic force microscopy. Br. J. Pharmacol. 135, 1943–1950 (2002).

    Article  CAS  Google Scholar 

  53. Janeway, C. A. Immunobiology: The Immune System in Health and Disease 5th edn (Garland Publishing, 2001).

    Google Scholar 

  54. Schneider, S. W., Larmer, J., Henderson, R. M. & Oberleithner, H. Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch. 435, 362–367 (1998).

    Article  CAS  Google Scholar 

  55. Sivasankar, S., Subramaniam, S. & Leckband, D. Direct molecular level measurements of the electrostatic properties of a protein surface. Proc. Natl Acad. Sci. USA 95, 12961–12966 (1998).

    Article  CAS  Google Scholar 

  56. Majd, S. & Mayer, M. Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug–membrane and protein–membrane interactions. Angew. Chem. Int. Ed. 44, 6697–6700 (2005).

    Article  CAS  Google Scholar 

  57. Capone, R. et al. Amyloid-beta-induced ion flux in artificial lipid bilayers and neuronal cells: resolving a controversy. Neurotox. Res. 16, 1–13 (2009).

    Article  CAS  Google Scholar 

  58. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  59. Lewis, B. A. & Engelman, D. M. Lipid bilayer thickness varies linearly with acyl chain-length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Sept and D. Talaga for assistance in modelling distributions of translocation times and Y.N. Billeh for valuable discussions. The authors also thank D.J. Estes and J.D. Uram for their work on the LabView recording software. This work was supported by a National Science Foundation Career Award (M.M., grant no. 0449088), the National Institutes of Health (M.M., grant no. 1R01GM081705), the Alzheimer's Disease Research Center (J.Y., 3P50 AG005131), the Alzheimer's Association (J.Y., NIRG-08-91651), the National Human Genome Research Institute (J.L., grant nos HG003290 and HG004776) and a Graduate Assistance in Areas of National Need Fellowship (E.C.Y).

Author information

Authors and Affiliations

Authors

Contributions

E.C.Y., J.Y., and M.M. conceived and designed the experiments. E.C.Y., J.M.J., S.M. and P.P. performed the experiments. R.C.R. and J.L. fabricated the nanopores. E.C.Y., J.L., J.Y. and M.M. co-wrote the manuscript and Supplementary Information.

Corresponding authors

Correspondence to Jerry Yang or Michael Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusko, E., Johnson, J., Majd, S. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotech 6, 253–260 (2011). https://doi.org/10.1038/nnano.2011.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing