Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-layer MoS2 transistors

This article has been updated

Abstract

Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene1,2, both because of its rich physics3,4,5 and its high mobility6. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors7. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films8,9,10,11,12,13 or requires high voltages14,15. Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5–3 cm2 V−1 s−1 range17 are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm2 V−1 s−1, similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 108 and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap16,18, it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure and AFM imaging of monolayer MoS2.
Figure 2: Fabrication of MoS2 monolayer transistors.
Figure 3: Characterization of MoS2 monolayer transistors.
Figure 4: Local gate control of the MoS2 monolayer transistor.

Change history

  • 17 February 2011

    In the version of this Letter originally published online, the label 'Vtg' was missing from Fig. 3a and the expression 'μ = 217 cm-2 Vs' should have read 'μ = 217 cm2 V-1 s-1' in Fig. 3b. These errors have now been corrected in all versions of the Letter.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  2. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Article  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  4. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  5. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    CAS  Article  Google Scholar 

  6. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    CAS  Article  Google Scholar 

  7. The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2009ITRS/Home2009.htm (2009).

  8. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  9. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  Article  Google Scholar 

  10. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  Article  Google Scholar 

  11. Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

    CAS  Article  Google Scholar 

  12. Yoon, Y. & Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).

    Article  Google Scholar 

  13. Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).

    Article  Google Scholar 

  14. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Article  Google Scholar 

  15. Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    CAS  Article  Google Scholar 

  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  17. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  18. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  Article  Google Scholar 

  19. Banerjee, S., Richardson, W., Coleman, J. & Chatterjee, A. A new three-terminal tunnel device. Electron Dev. Lett. 8, 347–349 (1987).

    Article  Google Scholar 

  20. Frindt, R. F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37, 1928–1929 (1966).

    CAS  Article  Google Scholar 

  21. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    CAS  Article  Google Scholar 

  22. Schumacher, A., Scandella, L., Kruse, N. & Prins, R. Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf. Sci. Lett. 289, L595–L598 (1993).

    CAS  Google Scholar 

  23. Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).

    CAS  Article  Google Scholar 

  24. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    CAS  Article  Google Scholar 

  25. Remskar, M. et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001).

    CAS  Article  Google Scholar 

  26. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Article  Google Scholar 

  27. Benameur, M., Radisavljevic, B., Sahoo, S., Berger, H. & Kis, A. Visibility of dichalcogenide nanolayers. http://lanl.arxiv.org/abs/1006.1048v1 (2010).

  28. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    CAS  Article  Google Scholar 

  29. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. App. Phys. 101, 014507 (2007).

    Article  Google Scholar 

  30. Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

    CAS  Article  Google Scholar 

  31. Debdeep, J. & Aniruddha, K. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  Google Scholar 

  32. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    CAS  Article  Google Scholar 

  33. Bohr, M. T., Chau, R. S., Ghani, T. & Mistry, K. The high-k solution. IEEE Spectrum 44, 29–35 (2007).

    Article  Google Scholar 

  34. Mistry, K. et al. A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE Tech. Dig. IEDM 247–250 (2007).

  35. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Dev. Lett. 28, 282–284 (2007).

    CAS  Article  Google Scholar 

  36. Fonoberov, V. A. & Balandin, A. A. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett. 6, 2442–2446 (2006).

    CAS  Article  Google Scholar 

  37. Gomez, L., Aberg, I. & Hoyt, J. L. Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm. IEEE Electron Dev. Lett. 28, 285–287 (2007).

    CAS  Article  Google Scholar 

  38. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    CAS  Article  Google Scholar 

  39. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    CAS  Article  Google Scholar 

  40. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Seifert, T. Heine and Y. Paiss for useful discussions. Device fabrication was carried out in part in the EPFL Center for Micro/Nanotechnology (CMI). Thanks go to K. Lister (CMI) for technical support with electron-beam lithography. This work was financially supported by the European Research Council (grant no. 240076, FLATRONICS: electronic devices based on nanolayers).

Author information

Authors and Affiliations

Authors

Contributions

B.R., J.B., V.G. and A.K. worked on device fabrication and contact optimization. A.R. built the system for atomic layer deposition of HfO2. B.R. and A.K. performed measurements and analysed the data presented in the paper and Supplementary Information. A.K. initiated the research and wrote the manuscript. All the authors read and commented on the manuscript.

Corresponding author

Correspondence to A. Kis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Radisavljevic, B., Radenovic, A., Brivio, J. et al. Single-layer MoS2 transistors. Nature Nanotech 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.279

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research