Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A recyclable supramolecular membrane for size-selective separation of nanoparticles

Abstract

Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability1, but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays1,2,3,4. Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies5 in water. The membranes are robust due to strong hydrophobic interactions6,7, allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular filtration membrane.
Figure 2: Filtration of gold nanoparticles Au3.
Figure 3: Retained nanoparticles in the supramolecular membrane.
Figure 4: Filtration experiments of gold nanoparticles Au2 and Au8.
Figure 5: Size-exclusion chromatography with quantum dots.

Similar content being viewed by others

References

  1. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    Article  CAS  Google Scholar 

  2. Zimmerman, S. C., Zeng, F., Reichert, D. E. C. & Kolotuchin, S. V. Self-assembling dendrimers. Science 271, 1095–1098 (1996).

    Article  CAS  Google Scholar 

  3. Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).

    Article  CAS  Google Scholar 

  4. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  Google Scholar 

  5. Krieg, E. et al. Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. J. Am. Chem. Soc. 131, 14365–14373 (2009).

    Article  CAS  Google Scholar 

  6. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    Article  CAS  Google Scholar 

  7. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  Google Scholar 

  8. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  9. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  10. Siebrands, T., Giersig, M., Mulvaney, P. & Fischer, C. H. Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9, 2297–2300 (1993).

    Article  CAS  Google Scholar 

  11. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  12. Chemseddine, A. & Weller, H. Highly monodisperse quantum sized CdS particles by size selective precipitation. Ber. Bunsen—Ges. Phys. Chem. 97, 636–638 (1993).

    Article  CAS  Google Scholar 

  13. Hanauer, M., Pierrat, S., Zins, I., Lotz, A. & Sönnichsen, C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 7, 2881–2885 (2007).

    Article  CAS  Google Scholar 

  14. Arnaud, I., Abid, J.-P., Roussel, C. & Girault, H. H. Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis (IEF). Chem. Commun. 787–788 (2005).

  15. Sun, X. et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 121, 957–960 (2009).

    Article  Google Scholar 

  16. Bai, L. et al. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 132, 2333–2337 (2010).

    Article  CAS  Google Scholar 

  17. Koros, W. J., Ma, Y. H. & Shimidzu, T. Terminology for membranes and membrane processes (IUPAC Recommendation 1996). J. Membr. Sci. 120, 149–159 (1996).

    Article  CAS  Google Scholar 

  18. Peng, X., Jin, J., Nakamura, Y., Ohno, T. & Ichinose, I. Ultrafast permeation of water through protein-based membranes. Nature Nanotech. 4, 353–357 (2009).

    Article  CAS  Google Scholar 

  19. Huang, L., Wang, D., Tang, H. & Wang, S. Separation and purification of nano-Al13 by UF method. Colloids Surf. A 275, 200–208 (2006).

    Article  CAS  Google Scholar 

  20. Sweeney, S. F., Woehrle, G. H. & Hutchison, J. E. Rapid purification and size separation of gold nanoparticles via diafiltration. J. Am. Chem. Soc. 128, 3190–3197 (2006).

    Article  CAS  Google Scholar 

  21. Akthakul, A., Hochbaum, A. I., Stellacci, F. & Mayes, A. M. Size fractionation of metal nanoparticles by membrane filtration. Adv. Mater. 17, 532–535 (2005).

    Article  CAS  Google Scholar 

  22. El-Safty, S. A. et al. Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chem. Commun. 46, 3917–3919 (2010).

    Article  CAS  Google Scholar 

  23. Vandezande, P., Gevers, L. E. M. & Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008).

    Article  CAS  Google Scholar 

  24. Benfer, S., Árki, P. & Tomandl, G. Ceramic membranes for filtration applications—preparation and characterization. Adv. Eng. Mater. 6, 495–500 (2004).

    Article  CAS  Google Scholar 

  25. Ulbricht, M. Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006).

    Article  CAS  Google Scholar 

  26. Beginn, U. Supramolecular templates as porogenes. Adv. Mater. 10, 1391–1394 (1998).

    Article  CAS  Google Scholar 

  27. Lu, Y., Suzuki, T., Zhang, W., Moore, J. S. & Marinas, B. J. Nanofiltration membranes based on rigid star amphiphiles. Chem. Mater. 19, 3194–3204 (2007).

    Article  CAS  Google Scholar 

  28. Yonezawa, T. & Kunitake, T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf. A 149, 193–199 (1999).

    Article  CAS  Google Scholar 

  29. Rogach, A. L. et al. Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J. Phys. Chem. C 111, 14628–14637 (2007).

    Article  CAS  Google Scholar 

  30. Gaponik, N. et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106, 7177–7185 (2002).

    Article  CAS  Google Scholar 

  31. Vossmeyer, T. et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 (1994).

    Article  CAS  Google Scholar 

  32. Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  33. Foos, E. E., Snow, A. W., Twigg, M. E. & Ancona, M. G. Thiol-terminated di-, tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral cluster. Chem. Mater. 14, 2401–2408 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Israel Science Foundation, the Minerva Foundation, the Gerhardt M.J. Schmidt Minerva Center for Supramolecular Architectures, and the Helen and Martin Kimmel Center for Molecular Design. The EM studies were conducted at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging (Weizmann Institute). B.R. holds the Abraham and Jennie Fialkow Career Development Chair. The authors thank T. Shirman for help with gold nanoparticle synthesis and C. Shahar for assistance with TEM measurements. Thanks also go to D. Milstein for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.R., H.W. and E.K. conceived the project and planned the experiments. E.K. performed the synthesis and filtration experiments. E. Shimoni and H.W. carried out electron microscopy studies and data analysis. E. Shirman synthesized nanoparticles Au6, Au7, QD1 and QD2 and participated in data analysis. E.K. and B.R. wrote the paper. All authors discussed the results and commented on the paper. All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Boris Rybtchinski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4797 kb)

Supplementary information

Supplementary movie (MOV 5327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieg, E., Weissman, H., Shirman, E. et al. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nature Nanotech 6, 141–146 (2011). https://doi.org/10.1038/nnano.2010.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing