Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large field-induced strains in a lead-free piezoelectric material

Abstract

Piezoelectric materials exhibit a mechanical response to electrical inputs, as well as an electrical response to mechanical inputs, which makes them useful in sensors and actuators1. Lead-based piezoelectrics demonstrate a large mechanical response, but they also pose a health risk2. The ferroelectric BiFeO3 is an attractive alternative because it is lead-free, and because strain can stabilize BiFeO3 phases with a structure that resembles a morphotropic phase boundary3. Here we report a reversible electric-field-induced strain of over 5% in BiFeO3 films, together with a characterization of the origins of this effect. In situ transmission electron microscopy coupled with nanoscale electrical and mechanical probing shows that large strains result from moving the boundaries between tetragonal- and rhombohedral-like phases, which changes the phase stability of the mixture. These results demonstrate the potential of BiFeO3 as a substitute for lead-based materials in future piezoelectric applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piezoelectric response in BFO capacitors.
Figure 2: Nanoscale localized switching.
Figure 3: Nanoscale reversible large electric-field-induced strain.
Figure 4: In situ mechanical TEM.
Figure 5: In situ electrical TEM.

Similar content being viewed by others

References

  1. Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  2. Liu, W. et al. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  3. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  4. Hathaway, K. & Clark, A. E. Magnetostrictive materials. MRS Bull. 18, 34–41 (1993).

    Article  CAS  Google Scholar 

  5. Ren, X. & Otsuka, K, Origin of rubber-like behavior in metal alloys. Nature 387, 579–582 (1997).

    Article  Google Scholar 

  6. Chernenko, V. A. et al. The development of new ferromagnetic shape memory alloys in Ni–Mn–Ga system. Scripta metallurgica et materialia 33, 1239–1244 (1995).

    Article  CAS  Google Scholar 

  7. Xu, Y. H. Ferroelectric Materials and Their Applications 109 (North-Holland, 1991).

    Google Scholar 

  8. Dkhil, B. et al. Local and long range polar order in the relaxor–ferroelectric compounds PbMg1/3Nb2/3O3 and PbMg0.3Nb0.6Ti0.1O3 . Phys. Rev. B 65, 024104 (2002).

    Article  Google Scholar 

  9. Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3–8% PbTiO3 . Phys. Rev. Lett. 86, 3891–3894 (2001).

    Article  CAS  Google Scholar 

  10. Noheda, B. et al. A monoclinic ferroelectric phase in the Pb(Zr1–xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999).

    Article  CAS  Google Scholar 

  11. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

    Article  CAS  Google Scholar 

  12. Wu, Z. & Cohen, R. E. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3 . Phys. Rev. Lett. 95, 037601 (2005).

    Article  Google Scholar 

  13. Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    Article  CAS  Google Scholar 

  14. Ederer, C. & Spaldin, N. A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

  15. Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    Article  Google Scholar 

  16. Chmielus, M. et al. Giant magnetic-field-induced strains in polycrystalline Ni–Mn–Ga. Nat. Mater. 8, 863–866 (2009).

    Article  CAS  Google Scholar 

  17. Sozinov, A. et al. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002).

    Article  CAS  Google Scholar 

  18. Zavaliche, F. et al. Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transitions 79, 991–1017 (2006).

    Article  CAS  Google Scholar 

  19. Fujino, S. et al. Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008).

    Article  Google Scholar 

  20. Du, X. et al. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 72, 2421–2423 (1998).

    Article  CAS  Google Scholar 

  21. Chen, H. D. et al. Electrical properties' maxima in thin films of the lead zirconate–lead titanate solid solution system. Appl. Phys. Lett. 67, 3411–3413 (1995).

    Article  CAS  Google Scholar 

  22. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2002).

    Article  Google Scholar 

  23. Hong, S. et al. Nanoscale piezoresponse studies of ferroelectric domains in epitaxial BiFeO3 nanostructures. J. Appl. Phys. 105, 061619 (2009).

    Article  Google Scholar 

  24. Nath, R. et al. Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures. Appl. Phys. Lett. 96, 163101 (2010).

    Article  Google Scholar 

  25. Durkan, C. et al. Probing domains at the nanometer scale in piezoelectric thin films. Phys. Rev. B 60, 16198–16204 (1999).

    Article  CAS  Google Scholar 

  26. Foster, C. M. Single-crystal Pb(ZrxTi1–x)O3 thin films prepared by metal–organic chemical vapor deposition: systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81, 2349–2357 (1997).

    Article  CAS  Google Scholar 

  27. Palkar, V. R. et al. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628–1630 (2002).

    Article  CAS  Google Scholar 

  28. Xu, G. et al. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

    Article  CAS  Google Scholar 

  29. Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).

    Article  Google Scholar 

  30. Yang, S. Y. et al. Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87, 102903 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Berkeley was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy (contract DE-AC02-05CH11231). The authors acknowledge support from the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy (contract DE-AC02-05CH11231). The work at National Chiao Tung University was supported by the National Science Council (contract 099-2811-M-009-003). J.S. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.X.Z., R.R., B.X., and A.M.M. conceived and designed the experiments. J.X.Z. and B.X. performed the experiments. J.X.Z., B.X., Q.H., J.S., P.Y., Y.H.C., L.W.M. and A.M.M. analysed the data and helped revise the manuscript. R.J.Z., P.Y., S.Y.Y. and C.H.W. contributed materials. J.X.Z., J.S. and R.R. co-wrote the paper.

Corresponding author

Correspondence to J. X. Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1184 kb)

Supplementary information

Supplementary movie 1 (AVI 131 kb)

Supplementary information

Supplementary movie 2 (AVI 986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Xiang, B., He, Q. et al. Large field-induced strains in a lead-free piezoelectric material. Nature Nanotech 6, 98–102 (2011). https://doi.org/10.1038/nnano.2010.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing