Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substrate-induced array of quantum dots in a single-walled carbon nanotube

Abstract

Single-walled carbon nanotubes are model one-dimensional structures1,2,3,4,5,6. They can also be made into zero-dimensional structures; quantum wells can be created in nanotubes by inserting metallofullerenes7, by mechanical cutting8,9,10 or by the application of mechanical strain11. Here, we report that quantum dot arrays can be produced inside nanotubes simply by causing a misalignment between the nanotube and the 〈100〉 direction of a supporting silver substrate. This method does not require chemical or physical treatment of either the substrate or the nanotube. A short quantum dot confinement length of 6 nm results in large energy splittings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two types of quantum-well structures realized in single-walled carbon nanotubes.
Figure 2: Periodic modulations in a nanotube on Ag(100).
Figure 3: Epitaxial relationships between the (6, 2) nanotube of Fig. 2, and Ag(100).
Figure 4: Substrate-induced quantum confinement in the nanotube.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, 2001).

    Book  Google Scholar 

  2. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  3. Avouris, P. & Chen, J. Nanotube electronics and optoelectronics. Mater. Today 9, 46–54 (2006).

    Article  CAS  Google Scholar 

  4. Charlier, J. C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  CAS  Google Scholar 

  5. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  6. Postma, H. W. C. et al. Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001).

    Article  CAS  Google Scholar 

  7. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  8. Venema, L. C. et al. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999).

    Article  CAS  Google Scholar 

  9. Lemay, S. G. et al. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412, 617–620 (2001).

    Article  CAS  Google Scholar 

  10. Maltezopoulos, T. et al. Direct observation of confined states in metallic single-walled carbon nanotubes. Appl. Phys. Lett. 83, 1011–1013 (2003).

    Article  CAS  Google Scholar 

  11. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  CAS  Google Scholar 

  12. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).

    Article  CAS  Google Scholar 

  13. Sze, S. M. Semiconductor Devices: Physics and Technology 2nd edn (Wiley, 2001).

    Google Scholar 

  14. Albrecht, P. M. & Lyding, J. W. Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces. Appl. Phys. Lett. 83, 5029–5031 (2003).

    Article  CAS  Google Scholar 

  15. Ruppalt, L. B. & Lyding, J. W. Charge transfer between semiconducting carbon nanotubes and their doped GaAs(110) and InAs(110) substrates detected by scanning tunnelling spectroscopy. Nanotechnology 18, 215202 (2007).

    Article  Google Scholar 

  16. Shin, H.-J., Clair, S., Kim, Y. & Kawai, M. Electronic structure of single-walled nanotubes on ultrathin insulating films. Appl. Phys. Lett. 93, 233104 (2008).

    Article  Google Scholar 

  17. Clair, S., Rabot, C., Kim, Y. & Kawai, M. Adsorption mechanism of aligned single wall carbon nanotubes at well defined metal surfaces. J. Vac. Sci. Technol. B 25, 1143–1146 (2007).

    Article  CAS  Google Scholar 

  18. Gartstein, Y. N., Zakhidov, A. A. & Baughman, R. H. Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89, 045503 (2002).

    Article  Google Scholar 

  19. McEuen, P. L. et al. Disorder, pseudospins and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  CAS  Google Scholar 

  20. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  21. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  CAS  Google Scholar 

  22. Suzuki, K. et al. Spatial imaging of two-dimensional electronic states in semiconductor quantum wells. Phys. Rev. Lett. 98, 136802 (2007).

    Article  CAS  Google Scholar 

  23. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  24. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  25. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  CAS  Google Scholar 

  26. Zhou, S. Y. et al. Substrate-induced bandgap opening epitaxial graphene. Nature Mater. 6, 770–775 (2007).

    Article  CAS  Google Scholar 

  27. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  CAS  Google Scholar 

  28. de Parga, A. L. V. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008).

    Article  Google Scholar 

  29. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773–2775 (2002).

    Article  CAS  Google Scholar 

  30. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Young Kuk for helpful discussions. This work was supported by the Grant-in-Aid for Young Scientists (A), ‘Single-molecule chemistry on the single-walled carbon nanotubes’, and partially by the Grant-in-Aid for Scientific Research on Priority Areas, ‘Electron transport through a linked molecule in nano-scale’, from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and in part by Global COE Program (Chemistry Innovation through Cooperation of Science and Engineering), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.S., S.C. and Y.K. conceived and designed the experiments. H.S. and S.C. performed the experiments and analysed the data. H.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yousoo Kim or Maki Kawai.

Supplementary information

Supplementary information

Supplementary information (PDF 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, HJ., Clair, S., Kim, Y. et al. Substrate-induced array of quantum dots in a single-walled carbon nanotube. Nature Nanotech 4, 567–570 (2009). https://doi.org/10.1038/nnano.2009.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing