Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled cobalt doping of magnetosomes in vivo

Abstract

Magnetotactic bacteria biomineralize iron into magnetite (Fe3O4) nanoparticles that are surrounded by lipid vesicles. These ‘magnetosomes’ have considerable potential for use in bio- and nanotechnological applications because of their narrow size and shape distribution and inherent biocompatibility1,2,3. The ability to tailor the magnetic properties of magnetosomes by chemical doping would greatly expand these applications4,5; however, the controlled doping of magnetosomes has so far not been achieved. Here, we report controlled in vivo cobalt doping of magnetosomes in three strains of the bacterium Magnetospirillum. The presence of cobalt increases the coercive field of the magnetosomes—that is, the field necessary to reverse their magnetization—by 36–45%, depending on the strain and the cobalt content. With elemental analysis, X-ray absorption and magnetic circular dichroism, we estimate the cobalt content to be between 0.2 and 1.4%. These findings provide an important advance in designing biologically synthesized nanoparticles with useful highly tuned magnetic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization properties of doped and undoped magnetosomes from different bacterial strains.
Figure 2: X-ray absorption analysis of Co and Fe content in Co-doped magnetosomes.
Figure 3: Effect of cobalt doping on the Verwey transition temperature.
Figure 4: Percent increase in coercivity versus percent of cobalt doping.

Similar content being viewed by others

References

  1. Bauerlein, E. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Edn 42, 614–641 (2003).

    Article  CAS  Google Scholar 

  2. Lang, C., Schueler, D. & Faivre, D. Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromol. Biosci. 7, 144–151 (2007).

    Article  CAS  Google Scholar 

  3. Devouard, B. et al. Magnetite from magnetotactic bacteria; size distributions and twinning. Am. Mineral. 83, 1387–1398 (1998).

    Article  CAS  Google Scholar 

  4. Lang, C. & Schueler, D. Biogenic nanoparticles: Production, characterization, and application of bacterial magnetosomes. J. Phys.: Condens. Matter 18, S2815–S2828 (2006).

    CAS  Google Scholar 

  5. Bazylinski, D. A. Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem. Geol. 132, 191–198 (1996).

    Article  CAS  Google Scholar 

  6. Krishnan, K. et al. Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 41, 793–815 (2006).

    Article  CAS  Google Scholar 

  7. Mehta, R. V. & Upadhyay, R. V. Science and technology of ferrofluids. Curr. Sci. 76, 305–312 (1999).

    CAS  Google Scholar 

  8. Duguet, E., Vasseur, S., Mornet, S. & Devoisselle, J.-M. Magnetic nanoparticles and their applications in medicine. Nanomedicine 1, 157–168 (2006).

    Article  CAS  Google Scholar 

  9. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  10. Schuler, D. & Baeuerlein, E. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180, 159–162 (1998).

    CAS  Google Scholar 

  11. Suzuki, T. et al. Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J. Bacteriol. 188, 2275–2279 (2006).

    Article  CAS  Google Scholar 

  12. Schuler, D. & Baeuerlein, E. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166, 301–307 (1996).

    Article  CAS  Google Scholar 

  13. Towe, K. M. & Moench, T. T. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett. 52, 213–220 (1981).

    Article  CAS  Google Scholar 

  14. Bazylinski, D. A., Garratt-Reed, A. J., Abedi, A. & Frankel, R. B. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol. 160, 35–42 (1993).

    CAS  Google Scholar 

  15. Li, R. et al. A study of the magnetotactic bacteria and their magnetosomes from a section of loess in the Shanxi Province, China. Diqiu Huaxue 25, 251–254 (1996).

    CAS  Google Scholar 

  16. Gorby, Y. A. Regulation of magnetosome biogenesis by oxygen and nitrogen. PhD thesis, Univ. New Hampshire (1989).

  17. Coker, V. S. Formation of magnetic nanoparticles by Fe(III)-reducing bacteria: synthesis and characterisation. PhD thesis, Univ. Manchester (2007).

  18. Pattrick, R. A. D. et al. Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: Developing a method for mineralogists. Eur. J. Mineral. 14, 1095–1102 (2002).

    Article  CAS  Google Scholar 

  19. Coker, V. S. et al. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ. Sci. Technol. 40, 7745–7750 (2006).

    Article  CAS  Google Scholar 

  20. Komeili, A., Vali, H., Beveridge, T. J. & Newman, D. K. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl Acad. Sci. USA 101, 3839–3844 (2004).

    Article  CAS  Google Scholar 

  21. Staniland, S. S., Ward, B., Harrison, A., van der Laan, G. & Telling, N. D. Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. USA 104, 19524–19528 (2007).

    Article  CAS  Google Scholar 

  22. Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  23. Pan, Y. et al. Rock magnetic properties of uncultured magnetotactic bacteria. Earth Planet. Sci. Lett. 237, 311–325 (2005).

    Article  CAS  Google Scholar 

  24. Prozorov, R. et al. Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys. Rev. B 76, 054406 (2007).

    Article  Google Scholar 

  25. Brabers, V. A. M., Walz, F. & Kronmuller, H. Impurity effects upon the Verwey transition in magnetite. Phys. Rev. B 58, 14163–14166 (1998).

    Article  CAS  Google Scholar 

  26. Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    Article  CAS  Google Scholar 

  27. Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W. & Lovley, D. R. A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett. 16, 665–668 (1989).

    Article  CAS  Google Scholar 

  28. Penninga, I., de Waard, H., Moskowitz, B. M., Bazylinski, D. A. & Frankel, R. B. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J. Magn. Magn. Mater. 149, 279–286 (1995).

    Article  CAS  Google Scholar 

  29. Williams, W. & Dunlop, D. J. Some effects of grain shape and varying external magnetic fields on the magnetic structure of small grains of magnetite. Phys. Earth Planet. Int. 65, 1–14 (1990).

    Article  Google Scholar 

  30. Dhara, S., Kotnala, R. K., Rastogi, A. C. & Das, B. K. Magnetic properties of chemical vapor deposited cobalt doped gamma iron oxide thin films. Jpn. J. Appl. Phys. 1 31, 3853–3857 (1992).

    Article  CAS  Google Scholar 

  31. www.dsmz.de/microorganisms/html/media/medium000380.html.

  32. Schultheiss, D. & Schuler, D. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179, 89–94 (2003).

  33. Grunberg, K., Wawer, C., Tebo, B. M. & Schuler, D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (Grant no. EP/C53204X/1 & EP/D057310/1). We would like to thank L. Eades for technical support with ICP-OES, as well as C. How, M. Tanaka and M. Jaffer for support with TEM. We thank A. Muxworthy for assistance and discussions regarding the computational data and V. S. Coker for useful discussions and advice about the XMCD data. We are also grateful to the staff of the Daresbury Laboratory for their support during our experiment there.

Author information

Authors and Affiliations

Authors

Contributions

S.S.S. and A.H. conceived the idea for the study. S.S.S., A.H. and F.B.W. designed the study. S.S.S. and F.B.W. optimized the bacterial growth; S.S.S. performed the bacterial preparations, magnetosome extractions, TEM, magnetic and ICP-OES experiments and analysis. N.D.T., G.v.d.L., A.H. and S.S.S. designed the XMCD study and S.S.S., F.B.W and N.D.T. performed the XMCD experiment. N.D.T and G.v.d.L. analysed the XMCD data and produced Fig. 2. W.W. performed all the computational calculation and analysis. S.S.S. composed the manuscript with contributions from all the authors. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sarah Staniland.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staniland, S., Williams, W., Telling, N. et al. Controlled cobalt doping of magnetosomes in vivo. Nature Nanotech 3, 158–162 (2008). https://doi.org/10.1038/nnano.2008.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing