Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A computational role for slow conductances: single-neuron models that measure duration

Abstract

Humans effortlessly interpret speech and music, whose patterns can contain sound durations up to thousands of milliseconds. How nervous systems measure such long durations is unclear. We show here that model neurons containing physiological slow conductances are 'naturally' sensitive to duration, replicate known duration-sensitive neurons and can be 'tuned' to respond to a wide range of specific durations. In addition, these models reproduce several other properties of duration-sensitive neurons not selected for in model construction. These data, and the widespread presence of slow conductances in nervous systems, suggest that slow conductances might play a major role in duration measurement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Y.M.C.A' temporal pattern.
Figure 2: Models that reproduce low-, high- and band-pass neurons.
Figure 3: Band-pass model response range increases with tuned duration.
Figure 4: Analysis of 'Y.M.C.A.' using single-spike slow-conductance band-pass neurons.

Similar content being viewed by others

References

  1. Potter, H.D. Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. J. Neurophysiol. 28, 1155–1184 (1965).

    Article  CAS  Google Scholar 

  2. Hall, J. & Feng, A.S. Neural analysis of temporally patterned sounds in the frog's thalamus: processing of pulse duration and pulse repetition rate. Neurosci. Lett. 63, 215–220 (1996).

    Article  Google Scholar 

  3. Casseday, J.H., Ehrlich, D. & Covey, E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264, 847–850 (1994).

    Article  CAS  Google Scholar 

  4. Galazyuk, A.V. & Feng, A.S. Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J. Comp. Physiol. A 180, 301–311 (1997).

    Article  CAS  Google Scholar 

  5. He, J., Hashikawa, T., Ojima, H. & Kinouchi, Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 17, 2615–2625 (1997).

    Article  CAS  Google Scholar 

  6. Covey, E. & Casseday, J.H. Timing in the auditory system of the bat. Annu. Rev. Physiol. 61, 457–476 (1999).

    Article  CAS  Google Scholar 

  7. Covey, E., Kauer, J.A. & Casseday, J.H. Whole-cell patch-clamp recording reveals subthreshold sound–evoked postsynaptic currents in the inferior colliculus of awake bats. J. Neurosci. 16, 3009–3018 (1996).

    Article  CAS  Google Scholar 

  8. Ehrlich, D., Casseday, J.H. & Covey, E. Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Neurophysiol. 77, 2360–2372 (1997).

    Article  CAS  Google Scholar 

  9. Casseday, J.H., Ehrlich, D. & Covey, E. Neural measurement of sound duration: control by excitatory inhibitory interactions in the inferior colliculus. J. Neurophysiol. 84, 1475–1487 (2000).

    Article  CAS  Google Scholar 

  10. Golowasch, J. & Marder, E. Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67, 318–331 (1992).

    Article  CAS  Google Scholar 

  11. Huguenard, J.R. & McCormick, D.A. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68, 1373–1383 (1992).

    Article  CAS  Google Scholar 

  12. Lopez-Lopez, J.R., DeLuis, D.A. & Gonzalez, C. Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J. Physiol. 460, 15–32 (1993).

    Article  CAS  Google Scholar 

  13. Wang, W.Y., McKenzie, J.S. & Kemm, R.E. Whole-cell K+ currents in identified olfactory bulb output neurones of rats. J. Physiol. 490, 63–77 (1996).

    Article  CAS  Google Scholar 

  14. Buckingham, S.D. & Spencer, A.N. K+ currents in cultured neurones from a polyclad flatworm. J. Exp. Biol. 203, 3189–3198 (2000).

    CAS  PubMed  Google Scholar 

  15. Pape, H.C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58, 299–327 (1996).

    Article  CAS  Google Scholar 

  16. Chen, C. Hyperpolarization-activated current (Ih) in primary auditory neurons. Hear. Res. 110, 179–190 (1997)

    Article  CAS  Google Scholar 

  17. Bal, R. & Oertel, D., Hyperpolarization-activated, mixed-cation current (Ih) in octopus cells of the mammalian cochlear nucleus. J. Neurophysiol. 84, 806–817 (2000).

    Article  CAS  Google Scholar 

  18. Hutcheon, B., Miura, R.M. & Puil, E. Models of subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76, 698–714 (1996).

    Article  CAS  Google Scholar 

  19. Angstadt, J.D. Persistent inward currents in cultured Retzius cells of the medicinal leech. J. Comp. Physiol. A 184, 49–61 (1999).

    Article  CAS  Google Scholar 

  20. Kumamota, E. & Shinnick-Gallagher, P. Slow inward and late slow outward currents induced by hyperpolarizing pre-pulses in cat bladder parasympathetic neurones. Eur. J. Physiol. 416, 322–334 (1990).

    Article  Google Scholar 

  21. Izhikevich, E.M. Neural excitability, spiking, and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000).

    Article  Google Scholar 

  22. Kanold, P.O. & Manis, P.B. Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J. Neurosci. 19, 2195–2208 (1999).

    Article  CAS  Google Scholar 

  23. Wu, M. & Jen, P.H.-S. Recovery cycles of neurons in the inferior colliculus, the pontine nuclei and the auditory cortex of the big brown bat, Eptesicus fuscus. Chin. J. Physiol. 41, 1–8 (1998).

    CAS  PubMed  Google Scholar 

  24. Westheimer, G. Discrimination of short time intervals by the human observer. Exp. Brain Res. 129, 121–126 (1999).

    Article  CAS  Google Scholar 

  25. Brand, A., Urban, A. & Grothe, B. Duration tuning in the mouse auditory midbrain. J. Neurophysiol. 84, 1790–1799 (2000).

    Article  CAS  Google Scholar 

  26. Peruzzi, D., Sivaramakrishnan, S. & Oliver, D.L. Identification of cell types in brain slices of the inferior colliculus. Neurosci. 101, 403–416 (2000).

    Article  CAS  Google Scholar 

  27. Sivaramakrishnan, S. & Oliver, D.L. Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J. Neurosci. 21, 2861–2877 (2001).

    Article  CAS  Google Scholar 

  28. Hooper, S.L. Transduction of temporal patterns by single neurons. Nature Neurosci. 1, 720–726 (1998).

    Article  CAS  Google Scholar 

  29. Turrigiano, G., Abbott, L.F. & Marder, E. Activity changes the intrinsic properties of cultured neurons. Science 264, 974–976 (1994).

    Article  CAS  Google Scholar 

  30. Itoh, K., Stevens, B., Schachner, M. & Fields, R.D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372 (1995).

    Article  CAS  Google Scholar 

  31. Fields, R.D., Eshete, F., Stevens, B.K. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca+2, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J. Neurosci. 17, 7252–7266 (1997).

    Article  CAS  Google Scholar 

  32. Dolmetsch, R.E., Xu, K. & Lewis, R.S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  Google Scholar 

  33. Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R.Y. Cell-permeant caged InsP3 ester shows that Ca+2 spike frequency can optimise gene expression. Nature 392, 936–941 (1998).

    Article  CAS  Google Scholar 

  34. Muschol, M. & Salzberg, B.M. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion. J. Neurosci. 20, 6773–6780 (2000).

    Article  CAS  Google Scholar 

  35. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  36. Huguenard, J.R. & McCormick, D.A. A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Covey for helpful discussions. This work was supported by the Neuroscience Program at Ohio University and the US National Institutes of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Hooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, S., Buchman, E. & Hobbs, K. A computational role for slow conductances: single-neuron models that measure duration. Nat Neurosci 5, 552–556 (2002). https://doi.org/10.1038/nn0602-838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0602-838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing