GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses


Metabotropic γ-aminobutyric acid type B (GABAB) and glutamate receptors (mGluRs) are postsynaptically co-expressed at cerebellar parallel fiber (PF)–Purkinje cell (PC) excitatory synapses, but their functional interactions are unclear. We found that mGluR1 agonist-induced currents and [Ca2+]i increases in PCs were enhanced following co-activation of GABAB receptors. A GABAB antagonist and a G-protein uncoupler suppressed these effects. Low-concentration baclofen, a GABAB agonist, augmented mGluR1-mediated excitatory synaptic current produced by stimulating PFs. These results indicate that postsynaptic GABAB receptors functionally interact with mGluR1 and enhance mGluR1-mediated excitatory transmission at PF–PC synapses. The interaction between the two types of metabotropic receptors provides a likely mechanism for regulating cerebellar synaptic plasticity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Enhancement of 1S,3R-ACPD-induced inward current by GABA.
Figure 2: Selective enhancement of mGluR1-mediated current following GABABR activation.
Figure 3: Blockade of baclofen-induced enhancement of the mGluR1-mediated current response by the GABABR antagonist CGP62349.
Figure 4: Voltage-independent facilitation of GABABR-mediated enhancement of the 1S,3R-ACPD-induced currents, and comparisons of presynaptic and postsynaptic actions induced by baclofen.
Figure 5: Simultaneous recordings of GABABR activation-mediated enhancement of 1S,3R-ACPD-induced current and [Ca2+]i transients in a PC.
Figure 6: Effects of signal transduction modulators on the GABABR-induced enhancement of the mGluR1-mediated current.
Figure 7: Enhancement by baclofen of mGluR1-mediated slow EPSCs produced in response to PF stimulation.
Figure 8: Dose dependency of baclofen-induced enhancement and inhibition of mGluR1-mediated slow EPSCs, and the effects of synaptic GABABR activation on fast and slow EPSCs tested by using the GABABR antagonist CGP62349.


  1. 1

    Bowery, N. G. GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Barnard, E. A. et al. Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313 (1998).

    CAS  PubMed  Google Scholar 

  3. 3

    Kaupmann, K. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Jones, K. A. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Kuner, R. et al. Role of heteromer formation in GABAB receptor function. Science 283, 74–77 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Thompson, S. M., Capogna, M. & Scanziani, M. Presynaptic inhibition in the hippocampus. Trends Neurosci. 16, 222–227 (1993).

    CAS  Article  Google Scholar 

  8. 8

    Wu, L. G. & Saggau, P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 20, 204–212 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Sodickson, D. L. & Bean, B. P. GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 16, 6374–6385 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Mintz, I. M. & Bean, B. P. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10, 889–898 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Kerr, D. I. & Ong, J. GABAB receptors. Pharmacol. Ther. 67, 187–246 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Martinelli, G. P., Holstein, G. R., Pasik, P. & Cohen, B. Monoclonal antibodies for ultrastructural visualization of L-baclofen-sensitive GABAB receptor sites. Neuroscience 46, 23–33 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Turgeon, S. M. & Albin, R. L. Pharmacology, distribution, cellular localization, and development of GABAB binding in rodent cerebellum. Neuroscience 55, 311–323 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Fritschy, J. M. et al. GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur. J. Neurosci. 11, 761–768 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Kawaguchi, S. & Hirano, T. Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABAB receptors in a Purkinje neuron. Neuron 27, 339–347 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Ito, M. Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Linden, D. J. & Connor, J. A. Long-term synaptic depression. Annu. Rev. Neurosci. 18, 319–357 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Conquet, F. et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372, 237–243 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Ichise, T. et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288, 1832–1835 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Nusser, Z., Mulvihill, E., Streit, P. & Somogyi, P. Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61, 421–427 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Luján, R., Roberts, J. D., Shigemoto, R., Ohishi, H. & Somogyi, P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat. 13, 219–241 (1997).

    Article  Google Scholar 

  23. 23

    Mateos, J. M. et al. Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber–Purkinje cell synapses in the rat cerebellar cortex. J. Neurochem. 74, 1301–1309 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Staub, C., Vranesic, I. & Knöpfel, T. Responses to metabotropic glutamate receptor activation in cerebellar Purkinje cells: induction of an inward current. Eur. J. Neurosci. 4, 832–839 (1992).

    Article  Google Scholar 

  25. 25

    Linden, D. J., Smeyne, M. & Connor, J. A. Trans-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. J. Neurophysiol. 71, 1992–1998 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Hirono, M., Konishi, S. & Yoshioka, T. Phospholipase C-independent group I metabotropic glutamate receptor-mediated inward current in mouse Purkinje cells. Biochem. Biophys. Res. Commun. 251, 753–758 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Goodman, R. R., Kuhar, M. J., Hester, L. & Snyder, S. H. Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220, 967–969 (1983).

    CAS  Article  Google Scholar 

  28. 28

    Jaarsma, D., Levey, A. I., Frostholm, A., Rotter, A. & Voogd, J. Light-microscopic distribution and parasagittal organisation of muscarinic receptors in rabbit cerebellar cortex. J. Chem. Neuroanat. 9, 241–259 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Miquel, M. C. et al. Postnatal development and localization of 5-HT1A receptor mRNA in rat forebrain and cerebellum. Brain Res. Dev. Brain Res. 80, 149–157 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Konishi, S. & Mitoma, H. in The Role of Adenosine in the Nervous System (ed. Okada, Y.) 89–95 (Elsevier, New York, 1997).

    Google Scholar 

  31. 31

    Mitoma, H. & Konishi, S. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neuroscience 88, 871–883 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Yamada, J., Saitow, F., Satake, S., Kiyohara, T. & Konishi, S. GABAB receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala. Neuropharmacology 38, 1743–1753 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Takahashi, M., Kovalchuk, Y. & Attwell, D. Pre- and postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. J. Neurosci. 15, 5693–5702 (1995).

    CAS  Article  Google Scholar 

  34. 34

    Dittman, J. S. & Regehr, W. G. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J. Neurosci. 16, 1623–1633 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Selbie, L. A. & Hill, S. J. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol. Sci. 19, 87–93 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Jin, W., Lee, N. M., Loh, H. H. & Thayer, S. A. Opioids mobilize calcium from inositol 1,4,5-trisphosphate-sensitive stores in NG108-15 cells. J. Neurosci. 14, 1920–1929 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Hahner, L., McQuilkin, S. & Harris, R. A. Cerebellar GABAB receptors modulate function of GABAA receptors. FASEB J. 5, 2466–2472 (1991).

    CAS  Article  Google Scholar 

  38. 38

    Tempia, F., Miniaci, M. C., Anchisi, D. & Strata, P. Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J. Neurophysiol. 80, 520–528 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Batchelor, A. M. & Garthwaite, J. Novel synaptic potentials in cerebellar Purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacology 32, 11–20 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Batchelor, A. M. & Garthwaite, J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Bourne, H. R. & Nicoll, R. Molecular machines integrate coincident synaptic signals. Cell 72 Suppl., 65–75 (1993).

    Article  Google Scholar 

  42. 42

    Llano, I. et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Miyata, M. et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Wang, S. S., Denk, W. & Hausser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3, 1266–1273 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).

    CAS  Article  Google Scholar 

  46. 46

    Mott, D. D. & Lewis, D. V. Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720 (1991).

    CAS  Article  Google Scholar 

  47. 47

    Komatsu, Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16, 6342–6352 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Liu, F. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and GABAA receptors. Nature 403, 274–280 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Khakh, B. S., Zhou, X., Sydes, J., Galligan, J. J. & Lester, H. A. State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406, 405–410 (2000).

    CAS  Article  Google Scholar 

Download references


We thank J. Bockaert, T. Murakoshi, D. Rusakov, F. Saitow and K. Yoshioka for comments on the manuscript and Novartis Pharma (Basel, Switzerland) for the gift of CGP62349. This work was supported in part by a Grant-in-Aid 0727910 (T.Y.) from the Ministry of Education, Science, Sports and Culture of Japan, and Grant-in-Aids 96L00310 (T.Y.) and 12780603 (M.H.) from the Japan Society for Promotion of Science. S.K. is a research director of CREST, JST (Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation).

Author information



Corresponding author

Correspondence to Shiro Konishi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirono, M., Yoshioka, T. & Konishi, S. GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4, 1207–1216 (2001).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing