Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calmodulin permanently associates with rat olfactory CNG channels under native conditions

Abstract

An important mechanism by which vertebrate olfactory sensory neurons rapidly adapt to odorants is feedback modulation of the Ca2+-permeable cyclic nucleotide–gated (CNG) transduction channels. Extensive heterologous studies of homomeric CNGA2 channels have led to a molecular model of channel modulation based on the binding of calcium-calmodulin to a site on the cytoplasmic amino terminus of CNGA2. Native rat olfactory CNG channels, however, are heteromeric complexes of three homologous but distinct subunits. Notably, in heteromeric channels, we found no role for CNGA2 in feedback modulation. Instead, an IQ-type calmodulin-binding site on CNGB1b and a similar but previously unidentified site on CNGA4 are necessary and sufficient. These sites seem to confer binding of Ca2+-free calmodulin (apocalmodulin), which is then poised to trigger inhibition of native channels in the presence of Ca2+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+-dependent inhibition of native rat olfactory CNG channels.
Figure 2: Calmodulin preassociates with CNGA2-A4-B1b channels.
Figure 3: Ca2+-CaM modulation of CNGA2-A4-B1b channels does not involve the N-terminal Baa motif of CNGA2.
Figure 4: Calmodulin-binding sites in CNGB1b and CNGA4 that mediate Ca2+-CaM modulation of CNGA2-A4-B1b channels.

Similar content being viewed by others

References

  1. Frings, S. Chemoelectrical signal transduction in olfactory sensory neurons of air- breathing vertebrates. Cell Mol. Life Sci. 58, 510–609 (2001).

    Article  CAS  Google Scholar 

  2. Kurahashi, T. & Shibuya, T. Ca2+-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  3. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    Article  CAS  Google Scholar 

  4. Chen, T.Y. & Yau, K.W. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    Article  CAS  Google Scholar 

  5. Liu, M., Chen, T.Y., Ahamed, B., Li, J. & Yau, K.W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354 (1994).

    Article  CAS  Google Scholar 

  6. Varnum, M.D. & Zagotta, W.N. Interdomain interactions underlying activation of cyclic nucleotide-gated channels. Science 278, 110–113 (1997).

    Article  CAS  Google Scholar 

  7. Grunwald, M.E., Zhong, H., Lai, J. & Yau, K.W. Molecular determinants of the modulation of cyclic nucleotide-activated channels by calmodulin. Proc. Natl. Acad. Sci. USA 96, 13444–13449 (1999).

    Article  CAS  Google Scholar 

  8. Zheng, J., Varnum, M.D. & Zagotta, W.N. Disruption of an intersubunit interaction underlies Ca2+-calmodulin modulation of cyclic nucleotide-gated channels. J. Neurosci. 23, 8167–8175 (2003).

    Article  CAS  Google Scholar 

  9. Trudeau, M.C. & Zagotta, W.N. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J. Biol. Chem. 278, 18705–18708 (2003).

    Article  CAS  Google Scholar 

  10. Bradley, J., Reuter, D. & Frings, S. Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits. Science 294, 2176–2178 (2001).

    Article  CAS  Google Scholar 

  11. Bönigk, W. et al. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 19, 5332–5347 (1999).

    Article  Google Scholar 

  12. Bradley, J., Frings, S., Yau, K.W. & Reed, R. Nomenclature for ion channel subunits. Science 294, 2095–2096 (2001).

    Article  CAS  Google Scholar 

  13. Sautter, A., Zong, X., Hofmann, F. & Biel, M. An isoform of the rod photoreceptor cyclic nucleotide-gated channel β subunit expressed in olfactory neurons. Proc. Natl. Acad. Sci. USA 95, 4696–4701 (1998).

    Article  CAS  Google Scholar 

  14. Munger, S.D. et al. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294, 2172–2175 (2001).

    Article  CAS  Google Scholar 

  15. Kaupp, U.B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  Google Scholar 

  16. Frings, S., Lynch, J.W. & Lindemann, B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J. Gen. Physiol. 100, 45–67 (1992).

    Article  CAS  Google Scholar 

  17. Lynch, J.W. & Lindemann, B. Cyclic nucleotide-gated channels of rat olfactory receptor cells: divalent cations control the sensitivity to cAMP. J. Gen. Physiol. 103, 87–106 (1994).

    Article  CAS  Google Scholar 

  18. Kramer, R.H. & Siegelbaum, S.A. Intracellular Ca2+ regulates the sensitivity of cyclic nucleotide-gated channels in olfactory receptor neurons. Neuron 9, 897–906 (1992).

    Article  CAS  Google Scholar 

  19. Kleene, S.J. Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to CAMP. J. Neurophysiol. 81, 2675–2682 (1999).

    Article  CAS  Google Scholar 

  20. Anholt, R.R. & Rivers, A.M. Olfactory transduction: cross-talk between second-messenger systems. Biochemistry 29, 4049–4054 (1990).

    Article  CAS  Google Scholar 

  21. O'Neil, K.T. & DeGrado, W.F. How calmodulin binds its targets: sequence independent recognition of amphiphilic α-helices. Trends. Biochem. Sci. 15, 59–64 (1990).

    Article  CAS  Google Scholar 

  22. Grunwald, M.E., Yu, W.P., Yu, H.H. & Yau, K.W. Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. J. Biol. Chem. 273, 9148–9157 (1998).

    Article  CAS  Google Scholar 

  23. Weitz, D. et al. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit. EMBO J. 17, 2273–2284 (1998).

    Article  CAS  Google Scholar 

  24. Bahler, M. & Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Letters 513, 107–113 (2002).

    Article  CAS  Google Scholar 

  25. Erickson, M.G., Liang, H., Mori, M.X. & Yue, D.T. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39, 97–107 (2003).

    Article  CAS  Google Scholar 

  26. Zuhlke, R.D., Pitt, G.S., Tsien, R.W. & Reuter, H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J. Biol. Chem. 275, 21121–21129 (2000).

    Article  CAS  Google Scholar 

  27. Yap, K.L. et al. Calmodulin target database. J. Struct. Funct. Genomics 1, 8–14 (2000).

    Article  CAS  Google Scholar 

  28. Peng, C., Rich, E.D., Thor, C.A. & Varnum, M.D. Functionally important calmodulin binding sites in both N- and C-terminal regions of the cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit. J. Biol. Chem. 278, 24617–24623 (2003).

    Article  CAS  Google Scholar 

  29. Sencer, S. et al. Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J. Biol. Chem. 276, 38237–38241 (2001).

    CAS  PubMed  Google Scholar 

  30. Leinders-Zufall, T., Rand, M.N., Shepherd, G.M., Greer, C.A. & Zufall, F. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J. Neurosci. 17, 4136–4148 (1997).

    Article  CAS  Google Scholar 

  31. Orsale, M. et al. Two distinct calcium-calmodulin interactions with N-terminal regions of the olfactory and rod cyclic nucleotide-gated channels characterized by NMR spectroscopy. FEBS Letters 548, 11–16 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Reisert and V. Bhandawat for many discussions; J. Kehoe, B. Barbour, N. Pardigon, J. Lynch, S. Hattar, R. Kuruvilla and P. Bauer for comments; P. Ascher for critically reading the manuscript and V. Kefelov for suggesting the experiment for Figure 2c. J.B. dedicates this paper to Norman Davidson. This work was supported by the Deutsche Forschungsgemeinschaft under grant SPP 1025 (S.F.) and by the Howard Hughes Medical Institute (J.B. & K.-W.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Bradley or Stephan Frings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, J., Bönigk, W., Yau, KW. et al. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7, 705–710 (2004). https://doi.org/10.1038/nn1266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing