Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death

Article metrics


We show that following immunoneutralization of endogenous transforming growth factors β (TGF-β) in the chick embryo, ontogenetic neuron death of ciliary, dorsal root and spinal motor neurons was largely prevented, and neuron losses following limb bud ablation were greatly reduced. Likewise, preventing TGF-β signaling by treatment with a TβR-II fusion protein during the period of ontogenetic cell death in the ciliary ganglion rescued all neurons that normally die. TUNEL staining revealed decreased numbers of apoptotic cells following antibody treatment. Exogenous TGF-β rescued the TGF-β-deprived phenotype. We conclude that TGF-β is critical in regulating ontogenetic neuron death as well as cell death following neuronal target deprivation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Neutralization of rcTGF-b or TGF-b activity from homgenates by anti-TGF-β or TGF-II-Fc.
Figure 2: Morphology and neuron numbers in chick ciliary ganglia at E10, which is after the main period of ontogenetic ciliary neuron death.
Figure 3: Neuron numbers and apoptosis in ciliary ganglia (CG), dorsal root ganglia (L3; DRG) and the lumbar motoneuron column of embryos treated with anti-TGF-β.
Figure 4: Rescue of the normal phenotype of CG and motoneurons in anti-TGF-β-treated embryos by administration of TGF-β.
Figure 5: Anti-TGF-β rescues lumbar dorsal root ganglia (DRG) and motoneurons (MN) following target deprivation.
Figure 6: TβR-II immunoreactivity in E10 ciliary ganglia following treatment with anti-TGF-β antibodies from E6 to E10.


  1. 1

    Roberts, A. B. & Sporn, M. B. in Handbook of Experimental Pharmacology Vol. 95 (eds. Sporn M. B. & Roberts A. B.) 419 –472 (Springer, Heidelberg, 1990).

  2. 2

    Krieglstein, K., Rufer, M., Suter-Crazzolara, C. & Unsicker, K. Neural functions of the transforming growth factor β. Int. J. Dev. Neurosci. 13, 301–315 (1995).

  3. 3

    Goumans, M. J. & Mummery, C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265 ( 2000).

  4. 4

    Flanders, K. C. et al. Immunhistochemical localization of transforming growth factor-βs in the nervous system of the mouse embryo. Development 113, 183–191 (1991).

  5. 5

    Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R. & Sporn, M. B. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625 (1991).

  6. 6

    Thoenen, H. in Handbook of Experimental Pharmacology, Vol. 33 (eds. Blaschko, H. & Muscholl, E.) 813–844 (Springer, Heidelberg, 1990).

  7. 7

    Krieglstein, K. et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J. Neurosci. 18, 9822– 9834 (1998).

  8. 8

    Korsching, S. The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739–2748 ( 1993).

  9. 9

    Oppenheim, R. W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501 ( 1991).

  10. 10

    Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron 20, 633–647 ( 1998).

  11. 11

    Krieglstein, K., Farkas, L. & Unsicker, K. TGF-β regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins . J. Neurobiol. 37, 563– 572 (1998).

  12. 12

    Landmesser, L. & Pilar, G. Synaptic formation during embryogenesis on ganglion cells lacking a periphery. J. Physiol. (Lond.) 247, 715–736 (1974).

  13. 13

    Oppenheim, R. W. et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344– 346 (1995).

  14. 14

    Hamburger, V. Cell death in the development of the lateral motor column of the chick embryo . J. Comp. Neurol. 160, 535– 546 (1975).

  15. 15

    Caldero, J. et al. Peripheral target regulation of the development and survival of spinal sensory and motor neurons in the chick embryo. J. Neurosci. 18, 356–370 ( 1998).

  16. 16

    Hollyday, M. & Hamburger, V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J. Comp. Neurol. 170, 311–320 ( 1976).

  17. 17

    Hamburger, V. Regression versus peripheral control of differentiation in motor hypoplasia . Amer. J. Anat. 102, 365– 410 (1958).

  18. 18

    Dahm, L. M. & Landmesser, L. T. The regulation of intramuscular nerve branching during normal development and following activity blockade . Dev. Biol. 130, 621–644 (1988).

  19. 19

    Dahm, L. M. & Landmesser, L. T. The regulation of synaptogenesis during normal development and following activity blockade. J. Neurosci. 11, 238–255 ( 1991).

  20. 20

    Oppenheim, R. W., Chu-Wang, I. W. & Maderdrut, J. L. Cell death of motoneurons in the chick embryo spinal cord. III. The differentiation of motoneurons prior to their induced degeneration following limb-bud removal. J. Comp. Neurol. 177, 87–111 (1978).

  21. 21

    Nishi, R. Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J. Neurobiol. 25, 612–619 (1994).

  22. 22

    Heller, S. et al. Analysis of function and expression of the chick GPA receptor (GPAR alpha) suggests multiple roles in neuronal development. Development 121, 2681–2693 (1995).

  23. 23

    Lewin, G. R. & Barde, Y. A. Physiology of the neurotrophins . Annu. Rev. Neurosci. 19, 289– 317 (1996).

  24. 24

    Oppenheim, R. W. Neurotrophic survival molecules for motoneurons: an embarrassment of riches . Neuron 17, 195–197 (1996).

  25. 25

    Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030 ( 1994).

  26. 26

    Farlie, P. G., Dringen, R., Rees, S. M., Kannourakis, G. & Bernard, O. bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA 92, 4397–4401 ( 1995).

  27. 27

    Zanjani, H. S., Vogel, M. W., Delhaye-Bouchaud, N., Martinou, J. C. & Mariani, J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J. Comp. Neurol. 374, 332–341 ( 1996).

  28. 28

    Parsadanian, A. S., Cheng, Y., Keller-Peck, C. R., Holtzman, D. M. & Snider, W. D. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009–1019 (1998).

  29. 29

    Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A. & Korsmeyer, S. J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

  30. 30

    Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401– 411 (1996).

  31. 31

    Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

  32. 32

    Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739– 750 (1998).

  33. 33

    Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

  34. 34

    Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).

  35. 35

    Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339– 352 (1998).

  36. 36

    Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

  37. 37

    Barker, P. A. p75NTR: A study in contrasts. Cell Death Differ. 5, 346–356 (1998).

  38. 38

    Frade, J. M. & Barde, Y. A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126, 683–690 (1999).

  39. 39

    Frade, J. M., Rodriguez-Tebar, A. & Barde, Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168 (1996).

  40. 40

    Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

  41. 41

    Buske, C. et al. TGF-beta inhibits growth and induces apoptosis in leukemic B cell precursors. Leukemia 11, 386– 392 (1996).

  42. 42

    Arsura, M., FitzGerald, M. J., Fausto, N. & Sonenshein, G. E. Nuclear factor-kappaB/Rel blocks transforming growth factor beta1-induced apoptosis of murine hepatocyte cell lines. Immunity 5, 31–59 (1997).

  43. 43

    de Luca, A., Weller, M. & Fontana, A. TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J. Neurosci. 16, 4174–4185 (1996).

  44. 44

    Graham, A., Koentges, G. & Lumsden, A. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol. Cell. Neurosci. 8 , 76–83 (1996).

  45. 45

    Furuta, Y., Piston, D.W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

  46. 46

    Schober, A. et al. Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. J. Neurosci. 19, 2008–2015 (1999).

  47. 47

    Oppenheim, R. W. et al. Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. J. Neurobiol. 24, 1065–1079 (1993).

  48. 48

    Oppenheim, R. W. et al. Modulation of early but not later stages of programmed cell death in embryonic avian spinal cord by sonic hedgehog. Mol. Cell. Neurosci. 13, 348–361 ( 1999).

Download references


We thank C.E. Henderson, C. Kalcheim and R. Klein for comments on the manuscript, and U. Hinz, I. Stenull, J. Fey and S.W. Wang for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft to K.K. and K.U. and by NIH grant NS-20402 to R.W.O.

Author information

Correspondence to Kerstin Krieglstein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krieglstein, K., Richter, S., Farkas, L. et al. Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death. Nat Neurosci 3, 1085–1090 (2000) doi:10.1038/80598

Download citation

Further reading