Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gap-junction-mediated propagation and amplification of cell injury

A Correction to this article was published on 01 December 1998


Gap junctions are conductive channels that connect the interiors of coupled cells. We determined whether gap junctions propagate transcellular signals during metabolic stress and whether such signaling exacerbates cell injury. Although overexpression of the human proto-oncogene bcl2 in C6 glioma cells normally increased their resistance to injury, the relative resistance of bcl2+ cells to calcium overload, oxidative stress and metabolic inhibition was compromised when they formed gap junctions with more vulnerable cells. The likelihood of death was in direct proportion to the number and density of gap junctions with their less resistant neighbors. Thus, dying glia killed neighboring cells that would otherwise have escaped injury. This process of glial 'fratricide' may provide a basis for the secondary propagation of brain injury in cerebral ischemia.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bcl2 expression increases the resistance of C6 cells.
Figure 2: Gap junctions amplify injury to include bcl2-expressing cells.
Figure 3: Bystander killing of bcl2-expressing cells is a function of gap junctional coupling.
Figure 4: Bcl+Cx+ cell death is delayed compared with Cx+ cell death in mixed cultures.
Figure 5: Loss of autonomous calcium regulation in gap-junction-coupled bcl2-expressing cells.
Figure 6: Gap junctions remain functional in the exposed rat parietal cortex for more than one hour after cardiac arrest.


  1. Ginsberg, M. Neuroprotection in brain ischemia: an update. The Neuroscientist 1, 95–103 (1995).

    Article  Google Scholar 

  2. Siesjo, B. et al. Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann. Thorac. Surg. 59, 1316–1320 (1995).

    CAS  Article  Google Scholar 

  3. Hossmann, K. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36, 557–565 (1994).

    CAS  Article  Google Scholar 

  4. Nedergaard, M. in Cellular and Molecular Mechanisms of Ischemic Brain Damage (eds Siesjo, B. K. & Wieloch, T.) 301–331 (Lippincott-Raven, Philadelphia, 1996).

  5. Hoehn-Berlage, M. et al. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain. J. Cereb. Blood Flow Metab. 15, 1002–1011 (1995).

    CAS  Article  Google Scholar 

  6. Goldberg, M. & Choi, D. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13, 3510–3524 (1993).

    CAS  Article  Google Scholar 

  7. Graham, D. in Greenfield's Neuropathology (eds Adams, J. H. & Duchen, L. W.) 153–268 (Oxford Univ. Press, New York, 1992).

  8. Dermietzel, R. & Spray, D. From neuro-glue ('nervenkitt') to glia: a prologue. Glia 24, 1– 7 (1998).

    CAS  Article  Google Scholar 

  9. Kumar, N. & Gilula, N. The gap junction communication channel . Cell 84, 381–388 (1996).

    CAS  Article  Google Scholar 

  10. Nadarajah, B., Thomaidou, D., Evans, W. & Parnavelas, J. Gap junctions in the adult cerebral cortex: regional differences in their distribution and cellular expression of connexins. J. Comp. Neurol. 376, 326–342 (1996).

    CAS  Article  Google Scholar 

  11. Rohlmann, A. & Wolff, J. R. in Gap Junctions in the Nervous System (eds Spray, D. C. & Dermietzel, R.) 175 –192 (R. J. Landes, Austin, Texas, 1996).

  12. Cotrina, M. et al. Astrocytic gap junctions remain open during ischemic conditions . J. Neurosci. 18, 2520– 2537 (1998).

    CAS  Article  Google Scholar 

  13. Warner, D., Ludwig, P., Pearlstein, R. & Brinkhous, A. Halothane reduces focal ischemic injury in the rat when brain temperature is controlled. Anesthesiology 82, 1237–1245 (1995).

    CAS  Article  Google Scholar 

  14. Rawanduzy, A., Hansen, A., Hansen, T. W. & Nedergaard, M. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J. Neurosurg. 87, 916–920 (1997).

    CAS  Article  Google Scholar 

  15. Saito, R. et al. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J. Cereb. Blood Flow Metab. 17, 857– 864 (1997).

    CAS  Article  Google Scholar 

  16. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. & Korsmeyer, S. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    CAS  Article  Google Scholar 

  17. Vaux, D., Cory, S. & Adams, J. Bcl2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–443 (1988).

    CAS  Article  Google Scholar 

  18. Mirabelli, F. et al. Alterations of surface morphology caused by the metabolism of menadione in mammalian cells are associated with the oxidation of critical sulfhydryl groups in cytoskeletal proteins. Biochem. Pharmacol. 37, 3423–3427 (1988).

    CAS  Article  Google Scholar 

  19. Zhong, L.-T. et al. Bcl2 inhibits death of central neural cells induced by multiple agents. Proc. Natl Acad. Sci. USA 90, 4533–4537 (1993).

    CAS  Article  Google Scholar 

  20. Zhu, D., Caveney, S., Kidder, G. & Naus, C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl Acad. Sci. USA 88, 1883–1887 (1991).

    CAS  Article  Google Scholar 

  21. Sullivan, R. & Lo, C. Expression of a connexin 43/b-galactosidase fusion protein inhibits gap junctional communication in 3T3 cells. J. Cell Biol. 130, 419–429 (1995).

    CAS  Article  Google Scholar 

  22. Venance, L., Stella, N., Glowinski, J. & Giaume, C. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. Neurosci. 17, 1981–1992 (1997).

    CAS  Article  Google Scholar 

  23. Martin, S. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 182, 1545–1556 (1995).

    CAS  Article  Google Scholar 

  24. Saez, J. C., Connor, J. A., Spray, D. C. & Bennett, M. V. L. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-triphosphate, and to calcium ions. Proc. Natl Acad. Sci. USA 86, 2708–2712 (1989).

    CAS  Article  Google Scholar 

  25. Choi, D. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60 (1995).

    CAS  Article  Google Scholar 

  26. Lam, M. et al. Evidence that bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl Acad. Sci. USA 91, 6569–6573 (1994).

    CAS  Article  Google Scholar 

  27. Prehn, J. et al. Regulation of neuronal bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc. Natl Acad. Sci. USA 91, 12599–12603 (1994).

    CAS  Article  Google Scholar 

  28. Reed, J. Double identity for proteins of the bcl-2 family. Nature 387, 773–776 (1997).

    CAS  Article  Google Scholar 

  29. Wade, M. H., Trosko, J. & Schindler, M. Fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science 232 , 525–5 28 (1986).

    Article  Google Scholar 

  30. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K. & Yamasaki, H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl Acad. Sci. USA 93, 1831–1835 (1996).

    CAS  Article  Google Scholar 

  31. Elfgang, C. et al. Specific permeability and selective formation of gap junction channels in connexin transfected HeLa cells. J. Cell Biol. 129, 805–817 (1995).

    CAS  Article  Google Scholar 

  32. Goldberg, S., Bechberger, J. & Naus, C. A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechnology 18 , 490–497 (1995).

    CAS  Google Scholar 

  33. Dermietzel, R. et al. Differential expression of three gap junction proteins in developing and mature brain tissue. Proc. Natl Acad. Sci. USA 86, 10148–10152 (1989).

    CAS  Article  Google Scholar 

  34. Haugland, R.P. in Handbook of Fluorescent Probes and Research Chemicals (ed Spence, M. ) (Portland, Oregon, 1996).

  35. Nedergaard, M., Goldman, S., Desai, S. & Pulsinelli, W. Acid-induced death in neurons and glia. J. Neurosci. 11, 2489–2497 (1991).

    CAS  Article  Google Scholar 

  36. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768– 1771 (1994).

    CAS  Article  Google Scholar 

Download references


We thank V. A. Fried for discussions and L. He for technical support. Supported by NIH/NINDS (RO130007 and RO135011). M. N. is an Established Investigator sponsored by the American Heart Association.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jane H-C Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, JC., Weigel, H., Cotrina, M. et al. Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1, 494–500 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing