Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features


Psychophysical studies indicate that structural features of odorants differentially influence their perceived odor. In the olfactory bulb (OB), odorants are represented by ensembles of activated glomeruli. Here we used optical imaging of intrinsic signals to examine how these structural features are represented spatially in the sensory map of the rat OB. We found that the dorsal OB contained two topographically fixed domains; constituent glomeruli in each domain could be activated by odorants with particular functional groups. Within each domain, other structural features such as carbon chain length and branching were represented by local differences in patterns. These results suggest that structural features are categorized into two classes, primary features (functional groups) that characterize each domain, and secondary features that are represented by local positions within each domain. Such hierarchical representations of different structural features correlate well with psychophysical structure–odor relationships.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A homologous series of carboxylic acids and aliphatic aldehydes activate glomeruli clustered in an anteromedial domain of the dorsal OB.
Figure 2: A homologous series of aliphatic alcohols and phenols activates glomeruli clustered in a lateral domain of the dorsal OB.
Figure 3: Anteromedial and lateral domains are distinct in the molecular receptive range of their constituent glomeruli.
Figure 4: A switch in the activated domain can be produced by a slight change in type and position of functional group.
Figure 5: Glomerular activity in the anteromedial domain elicited by a series of aliphatic esters.
Figure 6: Aliphatic acids with branched carbon chains and a double bond activated glomeruli in the anteromedial domain.
Figure 7: Position of the anteromedial and lateral domains in the sensory map of the main OB.


  1. 1

    Moncrieff, R. W. The Chemical Senses 3rd ed. (Leonard Hill, London, 1967).

    Google Scholar 

  2. 2

    Amoore, J. E., Johnston, J. W. Jr. & Rubin, M. The stereochemical theory of odor. Sci. Am. 210, 42–49 (1964).

    CAS  Article  Google Scholar 

  3. 3

    Beets, M. The molecular parameters of olfactory response. Pharmacol. Rev. 22, 1–34 (1970).

    CAS  PubMed  Google Scholar 

  4. 4

    Polak, E. H. Multiple profile-multiple receptor site model for vertebrate olfaction. J. Theor. Biol. 40, 469–484 (1973).

    CAS  Article  Google Scholar 

  5. 5

    Rupe, H. & von Majewski, K. I. Ueber osmophore gruppen., II. Ueber die darstellung von diazoimiden. (triazoverbindungen). Ber. Dtsch. Chem. Ges. 33, 3401–3410 (1900).

    Article  Google Scholar 

  6. 6

    Klopping, H. L. Olfactory theories and the odors of small molecules. J. Agric. Food Chem. 19, 999–1004 (1971).

    CAS  Article  Google Scholar 

  7. 7

    Macleod, A. J. Chemistry of odours. Symp. Zool. Soc. Lond. 45, 15–34 (1980).

    CAS  Google Scholar 

  8. 8

    Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Mombaerts, P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 22, 487–509 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Krautwurst, D., Yau, K.-W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl. Acad. Sci. USA 96, 4040–4045 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Friedrich, R. & Korsching, S. I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737–752 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Friedrich, R. W. & Korsching, S. I. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J. Neurosci. 18, 9977–9988 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Mori, K., Mataga, N. & Imamura, K. Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. J. Neurophysiol. 67, 786–789 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Imamura, K., Mataga, N. & Mori, K. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. J. Neurophysiol. 68, 1986–2002 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Johnson, B. A., Woo, C. C., Hingco, E. E., Pham, K. L. & Leon, M. Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. J. Comp. Neurol. 409, 529–548 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Yoshihara, Y. et al. OCAM: A new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J. Neurosci. 17, 5830–5842 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Lide, D. R. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Florida, 1996).

    Google Scholar 

  26. 26

    Tsuboi, A. et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J. Neurosci. 19, 8409–8418 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Laska, M. & Teubner, P. Olfactory discrimination ability for homologous series of aliphatic alcohols and aldehydes. Chem. Senses 24, 263–270 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Yang, X. et al. Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc. Natl. Acad. Sci. USA 92, 3371–3375 (1998).

    Google Scholar 

  29. 29

    Sharp, F. R., Kauer, J. S. & Shepherd, G. M. Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res. 98, 596–600 (1975).

    CAS  Article  Google Scholar 

  30. 30

    Sharp, F. R., Kauer, J. S. & Shepherd, G. M. Laminar analysis of 2-deoxyglucose uptake in olfactory bulb and olfactory cortex of rabbit and rat. J. Neurophysiol. 40, 800–813 (1977).

    CAS  Article  Google Scholar 

  31. 31

    Skeen, L. C. & Hall, W. C. Efferent projections of the main and accessory olfactory bulb in the tree shrew (Tupania glis). J. Comp. Neurol. 172, 1–36 (1977).

    CAS  Article  Google Scholar 

  32. 32

    Stewart, W. B., Kauer, J. S. & Shepherd, G. M. Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715–734 (1979).

    CAS  Article  Google Scholar 

  33. 33

    Jourdan, F., Duveau, A., Astic, L. & Holley, A. Spatial distribution of 2-deoxyglucose uptake in the olfactory bulb of rats stimulated with two different odors. Brain Res. 188, 139–154 (1980).

    CAS  Article  Google Scholar 

  34. 34

    Sallaz, M. & Jourdan, F. C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rats. Neuroreport 4, 55–58 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Guthrie, K. M., Anderson, A. J., Leon, M. & Gall, C. Odor-induced increase in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Proc. Natl. Acad. Sci. USA 90, 3329–3333 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Guthrie, K. M. & Gall, C. Functional mapping of odor-activated neurons in the olfactory bulb. Chem. Senses 20, 271–282 (1995).

    CAS  Article  Google Scholar 

  37. 37

    Johnson, B. A., Woo, C. C. & Leon, M. Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. J. Comp. Neurol. 393, 457–471 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Katoh, K., Koshimoto, H., Tani, A. & Mori, K. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J. Neurophysiol. 70, 2161–2175 (1993).

    CAS  Article  Google Scholar 

  39. 39

    Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92, 3371–3375 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Laurent, G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, 489–496 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Kashiwadani, H., Sasaki, Y. F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Bonhoeffer, T. & Grinvald, A. in Brain Mapping. The Method (eds. Toga, A. W. & Mazziotta, J. C.) 55–97 (Academic, San Diego, California, 1995).

    Google Scholar 

  44. 44

    Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junction bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    CAS  Article  Google Scholar 

Download references


We thank Z. Mainen and S. L. Macknik for comments on the manuscript, H. Kashiwadani and Y. F. Sasaki for help in initial experiments, M. Fukuda, M. Matsumoto and A. Ajima for technical advice and M. Takeichi for the antibody against αN-catenin. We also thank K. Takagi, A. Onuma, H. Osada and J. Ide for advice on odorants and their vapor pressures. This work was supported in part by grants from the Ministry of Education, Science, Sports and Culture in Japan, the Human Frontier Science Program (K.M.) and the Special Postdoctoral Researchers Program in RIKEN (N.U.).

Author information



Corresponding author

Correspondence to Naoshige Uchida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uchida, N., Takahashi, Y., Tanifuji, M. et al. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 3, 1035–1043 (2000).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing