Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

A mechanism for homeostatic plasticity

Neurons adapt to sustained alterations in activity by changing their intrinsic excitability. A form of this plasticity in hippocampal pyramidal neurons involves calcineurin-dependent dispersion and change in gating of K+ channels, reducing the cell's excitability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Misonou et al.3 hypothesize that calcium entry through ionotropic glutamate (NMDA) receptors, voltage-dependent calcium channels (VCC) or intracellular calcium release activates calcineurin (PP2B), leading to the dephosphorylation and dispersal of Kv2.1 clusters in hippocampal pyramidal neurons.
Figure 2: The shift in the voltage dependence of Kv2.1 activation reported by Misonou et al.3 (left) leads to a clear suppression of repetitive spiking in a computer simulation of a pyramidal neuron (right).

References

  1. Turrigiano, G.G. & Nelson, S.B. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  2. Zhang, W. & Linden, D.J. Nat. Rev. Neurosci. 4, 885–900 (2003).

    Article  CAS  Google Scholar 

  3. Misonou, H. et al. Nat. Neurosci. 7, 711–718 (2004).

    Article  CAS  Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F. & Katz, B. Arch. Sci. Physiol. 3, 129–150 (1949).

    CAS  Google Scholar 

  5. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  6. Hwang, P.M., Fotuhi, M., Bredt, D.S., Cunningham, A.M. & Snyder, S.H. J. Neurosci. 13, 1569–1576 (1993).

    Article  CAS  Google Scholar 

  7. Murakoshi, H. & Trimmer, J.S. J. Neurosci. 19, 1728–1735 (1999).

    Article  CAS  Google Scholar 

  8. Du, J., Haak, L.L., Phillips-Tansey, E., Russell, J.T. & McBain, C.J. J. Physiol. (Lond.) 522 (Pt. 1), 19–31 (2000).

    Article  CAS  Google Scholar 

  9. Coetzee, W.A. et al. Ann. N.Y. Acad. Sci. 868, 233–285 (1999).

    Article  CAS  Google Scholar 

  10. Muennich, E.A. & Fyffe, R.E. J. Physiol. (Lond.) 554, 673–685 (2004).

    Article  CAS  Google Scholar 

  11. Lim, S.T., Antonucci, D.E., Scannevin, R.H. & Trimmer, J.S. Neuron 25, 385–397 (2000).

    Article  CAS  Google Scholar 

  12. Dodge, K.L. & Scott, J.D. Biochem. Biophys. Res. Commun. 311, 1111–1115 (2003).

    Article  CAS  Google Scholar 

  13. Macica, C.M. & Kaczmarek, L.K. J. Neurosci. 21, 1160–1168 (2001).

    Article  CAS  Google Scholar 

  14. Baranauskas, G., Tkatch, T., Nagata, K., Yeh, J.Z. & Surmeier, D.J. Nat. Neurosci. 6, 258–266 (2003).

    Article  CAS  Google Scholar 

  15. Golding, N.L., Staff, N.P. & Spruston, N. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surmeier, D., Foehring, R. A mechanism for homeostatic plasticity. Nat Neurosci 7, 691–692 (2004). https://doi.org/10.1038/nn0704-691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0704-691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing