Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cell types for our sense of location: where we are and where we are going

Abstract

Technological advances in profiling cells along genetic, anatomical and physiological axes have fomented interest in identifying all neuronal cell types. This goal nears completion in specialized circuits such as the retina, while remaining more elusive in higher order cortical regions. We propose that this differential success of cell type identification may not simply reflect technological gaps in co-registering genetic, anatomical and physiological features in the cortex. Rather, we hypothesize it reflects evolutionarily driven differences in the computational principles governing specialized circuits versus more general-purpose learning machines. In this framework, we consider the question of cell types in medial entorhinal cortex (MEC), a region likely to be involved in memory and navigation. While MEC contains subsets of identifiable functionally defined cell types, recent work employing unbiased statistical methods and more diverse tasks reveals unsuspected heterogeneity and adaptivity in MEC firing patterns. This suggests MEC may operate more as a generalist circuit, obeying computational design principles resembling those governing other higher cortical regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The range at which clear cell type clustering emerges varies across neural circuits.
Figure 2: Capturing coding in MEC using a tuning-curve score versus model-based method.
Figure 3: Entorhinal neurons represent multiple task variables in heterogeneous ways.

Similar content being viewed by others

References

  1. Rogers, T.T. & McClelland, J.J. Semantic Cognition: A Parallel Distribution Processing Approach (MIT Press, Boston, 2004).

  2. Bikoff, J.B. et al. Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell 165, 207–219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanes, J.R. & Masland, R.H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Badea, T.C. & Nathans, J. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J. Comp. Neurol. 480, 331–351 (2004).

    Article  PubMed  Google Scholar 

  6. Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126 (2002).

    Article  PubMed  Google Scholar 

  7. Kong, J.H., Fish, D.R., Rockhill, R.L. & Masland, R.H. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489, 293–310 (2005).

    Article  PubMed  Google Scholar 

  8. Coombs, J., van der List, D., Wang, G.Y. & Chalupa, L.M. Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Baden, T. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rigotti, M., Rubin, D.B.D., Wang, X.-J. & Fusi, S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front. Comput. Neurosci. 4, 24 (2010).

  12. Raposo, D., Kaufman, M.T. & Churchland, A.K. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaufman, M.T., Churchland, M.M., Ryu, S.I. & Shenoy, K.V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Churchland, M.M., Afshar, A. & Shenoy, K.V. A central source of movement variability. Neuron 52, 1085–1096 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hardcastle, K., Maheswaranathan, N., Ganguli, S. & Giocomo, L.M. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 94, 375–387.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafting, T., Fyhn, M., Molden, S., Moser, M.B. & Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I. & Moser, M.B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B. & Moser, E.I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Savelli, F., Yoganarasimha, D. & Knierim, J.J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 1270–1282 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771–9777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ranck, J.B.J. Head direction cells in the deep cell layer of dorsal postsubiculum in freely moving rats. in Electrical Activity of the Archicortex (eds. Buzsáki, G. & Vanderwolf, C.H.) 217–220 (Akademiai Kiado, Budapest, 1985).

  26. Kropff, E., Carmichael, J.E., Moser, M.B. & Moser, E.I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Hinman, J.R., Brandon, M.P., Climer, J.R., Chapman, G.W. & Hasselmo, M.E. Multiple running speed signals in medial entorhinal cortex. Neuron 91, 666–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diehl, G.W., Hon, O.J., Leutgeb, S. & Leutgeb, J.K. Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron 94, 83–92.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krupic, J., Burgess, N. & O'Keefe, J. Neural representations of location composed of spatially periodic bands. Science 337, 853–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simoncelli, E.P. & Olshausen, B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Masland, R.H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Seung, H.S. & Sümbül, U. Neuronal cell types and connectivity: lessons from the retina. Neuron 83, 1262–1272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Manns, J.R. & Eichenbaum, H. Evolution of declarative memory. Hippocampus 16, 795–808 (2006).

    Article  PubMed  Google Scholar 

  34. Shenoy, K.V., Sahani, M. & Churchland, M.M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Fusi, S., Miller, E.K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Steffenach, H.A., Witter, M., Moser, M.B. & Moser, E.I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Parron, C., Poucet, B. & Save, E. Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat. Behav. Brain Res. 154, 345–352 (2004).

    Article  PubMed  Google Scholar 

  38. Hales, J.B. et al. Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep. 9, 893–901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klink, R. & Alonso, A. Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus 7, 571–583 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. de Nó, L. Studies on the structure of the cerebral cortex. Area entorhinalis. J. Psychol. Neurol. 45, 381–438 (1933).

    Google Scholar 

  41. Witter, M.P., Groenewegen, H.J., Lopes da Silva, F.H. & Lohman, A.H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161–253 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Alonso, A. & Llinás, R.R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Alonso, A. & Klink, R. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70, 128–143 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Varga, C., Lee, S.Y. & Soltesz, I. Target-selective GABAergic control of entorhinal cortex output. Nat. Neurosci. 13, 822–824 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kitamura, T. et al. Island cells control temporal association memory. Science 343, 896–901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramsden, H.L., Sürmeli, G., McDonagh, S.G. & Nolan, M.F. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLoS Comput Biol. 11, e1004032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langston, R.F. et al. Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Wills, T.J., Barry, C. & Cacucci, F. The abrupt development of adult-like grid cell firing in the medial entorhinal cortex. Front. Neural Circuits 6, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rowland, D.C., Roudi, Y., Moser, M.B. & Moser, E.I. Ten years of grid cells. Annu. Rev. Neurosci. 39, 19–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. & Moser, M.B. Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bonnevie, T. et al. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 16, 309–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Couey, J.J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Pastoll, H., Solanka, L., van Rossum, M.C. & Nolan, M.F. Feedback inhibition enables θ-nested γ oscillations and grid firing fields. Neuron 77, 141–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Sun, C. et al. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proc. Natl. Acad. Sci. USA 112, 9466–9471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuchs, E.C. et al. Local and distant input controlling excitation in layer II of the medial entorhinal cortex. Neuron 89, 194–208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ray, S. et al. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science 343, 891–896 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Giocomo, L.M., Zilli, E.A., Fransén, E. & Hasselmo, M.E. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garden, D.L., Dodson, P.D., O'Donnell, C., White, M.D. & Nolan, M.F. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60, 875–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Giocomo, L.M. et al. Grid cells use HCN1 channels for spatial scaling. Cell 147, 1159–1170 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Giocomo, L.M. & Hasselmo, M.E. Computation by oscillations: implications of experimental data for theoretical models of grid cells. Hippocampus 18, 1186–1199 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Truccolo, W., Hochberg, L.R. & Donoghue, J.P. Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13, 105–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P. & Brown, E.N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005).

    Article  PubMed  Google Scholar 

  65. Park, I.M., Meister, M.L., Huk, A.C. & Pillow, J.W. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395–1403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pillow, J.W., Paninski, L., Uzzell, V.J., Simoncelli, E.P. & Chichilnisky, E.J. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 25, 11003–11013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C. & Wilson, M.A. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu, B.M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Keene, C.S. et al. Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. J. Neurosci. 36, 3660–3675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kraus, B.J. et al. During running in place, grid cells integrate elapsed time and distance run. Neuron 88, 578–589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buzsáki, G. & Moser, E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aronov, D., Nevers, R. & Tank, D.W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aronov, D. & Tank, D.W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Y., Yosinski, J., Clune, J., Lipson, H. & Hopcroft, J. Convergent learning: do different neural networks learn the same representation. Proceedings of Machine Learning Research 44, 196–201 (2015).

    Google Scholar 

  76. Douglas, R.J. & Martin, K.A. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, R496–R500 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Wills, T.J., Cacucci, F., Burgess, N. & O'Keefe, J. Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.M.G. is a New York Stem Cell Foundation – Robertson Investigator. This work was supported by funding from The New York Stem Cell Foundation, the James S. McDonnell Foundation, NIMH MH106475 and a Klingenstein-Simons Fellowship to L.M.G.; the Bio-X Interdisciplinary Initiatives Program and a Simons Foundation grant to L.M.G. and S.G.; and the Burroughs-Wellcome, the Alfred P. Sloan Foundation, the McKnight Foundation, the James S. McDonnell Foundation and an Office of Naval Research grant to S.G., as well as an NSF-IGERT from the Stanford MBC Program and a Stanford Interdisciplinary Graduate Fellowship to K.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surya Ganguli or Lisa M Giocomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardcastle, K., Ganguli, S. & Giocomo, L. Cell types for our sense of location: where we are and where we are going. Nat Neurosci 20, 1474–1482 (2017). https://doi.org/10.1038/nn.4654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing