Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β

Abstract

We show that a natural behavior, exploration of a novel environment, causes DNA double-strand breaks (DSBs) in neurons of young adult wild-type mice. DSBs occurred in multiple brain regions, were most abundant in the dentate gyrus, which is involved in learning and memory, and were repaired within 24 h. Increasing neuronal activity by sensory or optogenetic stimulation increased neuronal DSBs in relevant but not irrelevant networks. Mice transgenic for human amyloid precursor protein (hAPP), which simulate key aspects of Alzheimer's disease, had increased neuronal DSBs at baseline and more severe and prolonged DSBs after exploration. Interventions that suppress aberrant neuronal activity and improve learning and memory in hAPP mice normalized their levels of DSBs. Blocking extrasynaptic NMDA-type glutamate receptors prevented amyloid-β (Aβ)-induced DSBs in neuronal cultures. Thus, transient increases in neuronal DSBs occur as a result of physiological brain activity, and Aβ exacerbates DNA damage, most likely by eliciting synaptic dysfunction.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Aβ increases neuronal γH2A.X formation in vivo and in vitro.
Figure 2: Modulation of DSBs by exploration of a novel environment, overexpression of hAPP/Aβ, and reduction of endogenous tau.
Figure 3: Exploration- and hAPP/Aβ-induced increases in DNA damage detected by the comet assay.
Figure 4: Network-specific modulation of DSBs by stimulation of primary visual cortex or striatal indirect-pathway neurons.
Figure 5: Tau reduction prevents the Aβ-induced increase in neuronal γH2A.X foci.
Figure 6: Levetiracetam normalizes the number of γH2A.X foci in the hippocampus of hAPP mice.
Figure 7: Aβ-induced increases in γH2A.X in neuronal cultures depend on neuronal activity.
Figure 8: Aβ-induced increases in γH2A.X-positive foci in primary neuronal cultures require activation of extrasynaptic NR2B-containing NMDARs.

References

  1. Brasnjevic, I., Hof, P.R., Steinbusch, H.W. & Schmitz, C. Accumulation of nuclear DNA damage or neuron loss: molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases. DNA Repair (Amst.) 7, 1087–1097 (2008).

    Article  CAS  Google Scholar 

  2. Moreira, P.I. et al. Nucleic acid oxidation in Alzheimer disease. Free Radic. Biol. Med. 44, 1493–1505 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bonner, W.M. et al. γH2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ismail, I.H. & Hendzel, M.J. The γ-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ. Mol. Mutagen. 49, 73–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S.Y. et al. Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. J. Biol. Chem. 285, 29525–29534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin, B. et al. Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. J. Exp. Med. 206, 2625–2639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernando, R.N. et al. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc. Natl. Acad. Sci. USA 108, 5837–5842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crowe, S.L., Movsesyan, V.A., Jorgensen, T.J. & Kondratyev, A. Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur. J. Neurosci. 23, 2351–2361 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crowe, S.L., Tsukerman, S., Gale, K., Jorgensen, T.J. & Kondratyev, A.D. Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. J. Neurosci. 31, 7648–7656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palop, J.J. et al. Vulnerability of dentate granule cells to disruption of Arc expression in human amyloid precursor protein transgenic mice. J. Neurosci. 25, 9686–9693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vazdarjanova, A. et al. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, I.H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Palop, J.J. et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc. Natl. Acad. Sci. USA 100, 9572–9577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palop, J.J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palop, J.J. & Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Götz, J. & Ittner, L.M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi, D.T. & Chen, K.S. Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer's disease. Genes Brain Behav. 4, 173–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Marchetti, C. & Marie, H. Hippocampal synaptic plasticity in Alzheimer's disease: what have we learned so far from transgenic models? Rev. Neurosci. 22, 373–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature 479, 237–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fillingham, J., Keogh, M.C. & Krogan, N.J. γH2AX and its role in DNA double-strand break repair. Biochem. Cell Biol. 84, 568–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 21, 1719–1729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward, I.M., Minn, K., Jorda, K.G. & Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278, 19579–19582 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Olive, P.L. & Banath, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Flint, M.S., Baum, A., Chambers, W.H. & Jenkins, F.J. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32, 470–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Harris, J.A. et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68, 428–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberson, E.D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on Tau levels in multiple mouse models of Alzheimer's disease. J. Neurosci. 31, 700–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palop, J.J. & Mucke, L. Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol. 66, 435–440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez, P.E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc. Natl. Acad. Sci. USA 109, E2895–E2903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardingham, G.E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, S. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shull, E.R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhogal, N., Jalali, F. & Bristow, R.G. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int. J. Radiat. Biol. 85, 732–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Grudzenski, S., Raths, A., Conrad, S., Rube, C.E. & Lobrich, M. Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proc. Natl. Acad. Sci. USA 107, 14205–14210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canugovi, C. et al. Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc. Natl. Acad. Sci. USA 109, 14948–14953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y., Goodyer, C. & LeBlanc, A. Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3,-6,-7, and -8. J. Neurosci. 20, 8384–8389 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, H.G. et al. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochem. Int. 54, 84–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L., Cheung, T., Chen, J. & Herrup, K. A comparative study of five mouse models of Alzheimer's disease: cell cycle events reveal new insights into neurons at risk for death. Int. J. Alzheimers Dis. 2011, 171464 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. Morris, M. et al. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2012.12.003 (16 January 2013).

  45. Cissé, M. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Li, S. et al. Soluble oligomers of amyloid β-protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Esposito, L. et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26, 5167–5179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, J.L., Tadokoro, T., Keijzers, G., Mattson, M.P. & Bohr, V.A. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J. Biol. Chem. 285, 28191–28199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Day, J.J. & Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 70, 813–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gräff, J., Kim, D., Dobbin, M.M. & Tsai, L.H. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol. Rev. 91, 603–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, J.S. et al. Collagen VI protects neurons against Aβ toxicity. Nat. Neurosci. 12, 119–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spink, A.J., Tegelenbosch, R.A.J., Buma, M.O.S. & Noldus, L.P.J.J. The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 73, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Pong, K., Doctrow, S.R., Huffman, K., Adinolfi, C.A. & Baudry, M. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp. Neurol. 171, 84–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Rong, Y., Doctrow, S.R., Tocco, G. & Baudry, M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. USA 96, 9897–9902 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-102 (2011).

Download references

Acknowledgements

We thank D.J. Selkoe (Harvard Medical School) and D.M. Walsh (Conway Institute and University College Dublin) for CHO-7PA2 cells; N. Sakane, E. Verdin and L. Verret for comments on the manuscript; H. Kassler for advice on γ-irradiation; D. Davalos for advice on confocal imaging; D. Pathak for advice on live cell imaging; H. Solanoy, M. Thwin, C. Wang and G.-Q. Yu for technical support; A.L. Lucido for editorial review; J. Carroll, T. Roberts, G. Maki and C. Goodfellow for preparation of graphics; and M. Dela Cruz for administrative assistance. The study was supported by US National Institutes of Health grants AG011385, AG022074 and NS065780 to L.M. and a gift from the S.D. Bechtel, Jr. Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.S. designed and conducted behavioral, immunohistochemical and biochemical analyses. P.E.S. designed and carried out levetiracetam treatments and stress-related studies. A.V.K. designed and conducted optogenetic experiments. X.W. and K.H. provided technical assistance for biochemical analyses. K.E. contributed to statistical analyses. N.D. helped design behavioral experiments. A.C.K. supervised the optogenetic experiments. E.S. and L.M. analyzed and interpreted data and wrote the manuscript. L.M. conceived, supervised and provided funding for the study.

Corresponding author

Correspondence to Lennart Mucke.

Ethics declarations

Competing interests

L.M. serves on scientific advisory boards of iPierian and Neuropore Therapies and has received funding for other research projects from Bristol-Myers Squibb and Takeda Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1128 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suberbielle, E., Sanchez, P., Kravitz, A. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16, 613–621 (2013). https://doi.org/10.1038/nn.3356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing