Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Behavior-dependent specialization of identified hippocampal interneurons

Abstract

A large variety of GABAergic interneurons control information processing in the hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information processing during behavior is not known. We employed a new technique for recording and labeling interneurons and pyramidal cells in drug-free, freely moving rats. Recorded parvalbumin-expressing basket interneurons innervated somata and proximal pyramidal cell dendrites, whereas nitric oxide synthase– and neuropeptide Y–expressing ivy cells provided synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike-timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket, but not ivy, cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state–contingent manner, whereas persistently firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thereby differentially controlling network activity during behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Firing patterns of an identified PV-expressing basket cell during different behavioral states.
Figure 2: Firing patterns of an identified ivy cell during different behavioral states.
Figure 3: Molecular expression and firing patterns of a place cell.
Figure 4: Behavioral state segmentation.
Figure 5: Differential firing of PV-expressing basket and ivy cells during distinct behavioral states.
Figure 6: Differential firing of PV-expressing basket and ivy cells during network oscillations.
Figure 7: Relationship between frequency and amplitude of theta oscillations and the firing rate of PV-expressing basket and ivy cells.

Similar content being viewed by others

References

  1. Buzsaki, G. Rhythms of the Brain (Oxford University Press, New York, 2006).

  2. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  3. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  4. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  5. Buhl, E.H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  Google Scholar 

  6. Pawelzik, H., Hughes, D.I. & Thomson, A.M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).

    Article  Google Scholar 

  7. Lamsa, K.P., Heeroma, J.H., Somogyi, P., Rusakov, D.A. & Kullmann, D.M. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315, 1262–1266 (2007).

    Article  CAS  Google Scholar 

  8. Fuchs, E.C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    Article  CAS  Google Scholar 

  9. Cossart, R. et al. Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus 16, 408–420 (2006).

    Article  Google Scholar 

  10. Glickfeld, L.L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat. Neurosci. 9, 807–815 (2006).

    Article  CAS  Google Scholar 

  11. Hájos, N. et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137 (2004).

    Article  Google Scholar 

  12. Gloveli, T. et al. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. (Lond.) 562, 131–147 (2005).

    Article  CAS  Google Scholar 

  13. Mann, E.O., Suckling, J.M., Hajos, N., Greenfield, S.A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).

    Article  CAS  Google Scholar 

  14. Gulyás, A.I. et al. Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J. Neurosci. 30, 15134–15145 (2010).

    Article  Google Scholar 

  15. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  16. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F. & Petersen, C.C. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    Article  CAS  Google Scholar 

  17. Gentet, L.J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    Article  CAS  Google Scholar 

  18. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  Google Scholar 

  19. Maurer, A.P., Cowen, S.L., Burke, S.N., Barnes, C.A. & McNaughton, B.L. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J. Neurosci. 26, 13485–13492 (2006).

    Article  CAS  Google Scholar 

  20. Ego–Stengel, V. & Wilson, M.A. Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17, 161–174 (2007).

    Article  Google Scholar 

  21. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    Article  CAS  Google Scholar 

  22. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    Article  CAS  Google Scholar 

  23. Haiss, F., Butovas, S. & Schwarz, C. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J. Neurosci. Methods 187, 67–72 (2010).

    Article  Google Scholar 

  24. Fazzari, P. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signaling. Nature 464, 1376–1380 (2010).

    Article  CAS  Google Scholar 

  25. Fuentealba, P. et al. Ivy cells: a population of nitric oxide–producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57, 917–929 (2008).

    Article  CAS  Google Scholar 

  26. Szabadics, J. & Soltesz, I. Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J. Neurosci. 29, 4239–4251 (2009).

    Article  CAS  Google Scholar 

  27. Tricoire, L. et al. Common origins of hippocampal ivy and nitric oxide synthase–expressing neurogliaform cells. J. Neurosci. 30, 2165–2176 (2010).

    Article  CAS  Google Scholar 

  28. Epsztein, J., Brecht, M. & Lee, A.K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  CAS  Google Scholar 

  29. Harvey, C.D., Collman, F., Dombeck, D.A. & Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  Google Scholar 

  30. O'Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976).

    Article  CAS  Google Scholar 

  31. Oláh, S. et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461, 1278–1281 (2009).

    Article  Google Scholar 

  32. Lubenov, E.V. & Siapas, A.G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).

    Article  CAS  Google Scholar 

  33. Hartwich, K., Pollak, T. & Klausberger, T. Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations. J. Neurosci. 29, 9563–9574 (2009).

    Article  CAS  Google Scholar 

  34. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  Google Scholar 

  35. Ylinen, A. et al. Sharp wave–associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  Google Scholar 

  36. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006).

    Article  CAS  Google Scholar 

  37. Hu, H., Martina, M. & Jonas, P. Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327, 52–58 (2010).

    Article  CAS  Google Scholar 

  38. Losonczy, A., Zemelman, B., Vaziri, A. & Magee, J. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 13, 967–972 (2010).

    Article  CAS  Google Scholar 

  39. Lovett–Barron, M. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat. Neurosci. 15, 423–430 (2012).

    Article  Google Scholar 

  40. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  41. Foster, D.J. & Wilson, M.A. Reverse replay of behavioral sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  Google Scholar 

  42. Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  CAS  Google Scholar 

  43. Markwardt, S.J., Dieni, C.V., Wadiche, J.I. & Overstreet-Wadiche, L. Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat. Neurosci. 14, 1407–1409 (2011).

    Article  CAS  Google Scholar 

  44. Vizi, E.S. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharm. Rev. 52, 63–89 (2000).

    CAS  PubMed  Google Scholar 

  45. Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).

    Article  CAS  Google Scholar 

  46. Hacker, S.O., White, C.E. & Black, I.H. A comparison of target-controlled infusion versus volatile inhalant anesthesia for heart rate, respiratory rate, and recovery time in a rat model. Contemp. Top. Lab. Anim. Sci. 44, 7–12 (2005).

    CAS  PubMed  Google Scholar 

  47. Lasztóczi, B., Tukker, J.J., Somogyi, P. & Klausberger, T. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area. J. Neurosci. 31, 18073–18093 (2011).

    Article  Google Scholar 

  48. Klausberger, T. et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793 (2005).

    Article  CAS  Google Scholar 

  49. Louie, K. & Wilson, M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156 (2001).

    Article  CAS  Google Scholar 

  50. Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Koroknai for the reconstruction of the dendritic tree of cell D26p, I. Lukacs for the reconstruction of cell TV08k, J. Somogyi for confocal microscopic data acquisition and illustrations, K. Detzner for electron microscopy and immunohistochemistry, R. Hauer and E. Borok for histological processing, T. Sakatani for contributions to microdrive development, B. Micklem for help with the preparation of illustrations, J. O'Neill for help with place cell analysis, Y. Dalezios and G. Dorffner for advice on statistics, and R. Guillery, D. Dupret, M. Capogna, J. Csicsvari and L. Marton for comments on an earlier version of the manuscript. This work was supported in part by grant 242689 of the European Research Council, grant SCIC03 of the Vienna Science and Technology Fund and grant W1205 of the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experiments, analysis and manuscript preparation.

Corresponding authors

Correspondence to Damien Lapray, Peter Somogyi or Thomas Klausberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapray, D., Lasztoczi, B., Lagler, M. et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci 15, 1265–1271 (2012). https://doi.org/10.1038/nn.3176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing