Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cortical oscillations and speech processing: emerging computational principles and operations


Neuronal oscillations are ubiquitous in the brain and may contribute to cognition in several ways: for example, by segregating information and organizing spike timing. Recent data show that delta, theta and gamma oscillations are specifically engaged by the multi-timescale, quasi-rhythmic properties of speech and can track its dynamics. We argue that they are foundational in speech and language processing, 'packaging' incoming information into units of the appropriate temporal granularity. Such stimulus-brain alignment arguably results from auditory and motor tuning throughout the evolution of speech and language and constitutes a natural model system allowing auditory research to make a unique contribution to the issue of how neural oscillatory activity affects human cognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A theory of early oscillation-based operations in speech perception.
Figure 2: Speech–brain interaction from human intracortical recordings of primary auditory cortex.
Figure 3: Generation of oscillations in a cortical column.
Figure 4: Comparison of neural responses in auditory primary and association (Brodmann area 22) cortices.
Figure 5: A biophysical model of coupled theta and gamma oscillations.
Figure 6: Functional anatomy of the speech processing network.


  1. 1

    Heimbauer, L.A., Beran, M.J. & Owren, M.J. A chimpanzee recognizes synthetic speech with significantly reduced acoustic cues to phonetic content. Curr. Biol. 21, 1210–1214 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Liberman, A.M. & Mattingly, I.G. The motor theory of speech perception revised. Cognition 21, 1–36 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time'. Speech Commun. 41, 245–255 (2003).

    Article  Google Scholar 

  4. 4

    Shannon, R.V. et al. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Lorenzi, C. et al. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc. Natl. Acad. Sci. USA 103, 18866–18869 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Adank, P. & Janse, E. Perceptual learning of time-compressed and natural fast speech. J. Acoust. Soc. Am. 126, 2649–2659 (2009).

    Article  Google Scholar 

  7. 7

    Giraud, A.L. et al. Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56, 1127–1134 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Ghitza, O. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front. Psychol. 2, 130 (2011).

    Article  Google Scholar 

  9. 9

    Ghitza, O. & Greenberg, S. On the possible role of brain rhythms in speech perception: intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica 66, 113–126 (2009).

    Article  Google Scholar 

  10. 10

    Liégeois-Chauvel, C. et al. Temporal envelope processing in the human left and right auditory cortices. Cereb. Cortex 14, 731–740 (2004).

    Article  Google Scholar 

  11. 11

    Ding, N. & Simon, J.Z. Neural representations of complex temporal modulations in the human auditory cortex. J. Neurophysiol. 102, 2731–2743 (2009).

    Article  Google Scholar 

  12. 12

    Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Ahissar, E. et al. Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc. Natl. Acad. Sci. USA 98, 13367–13372 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Abrams, D.A. et al. Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci. 28, 3958–3965 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Nourski, K.V. et al. Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29, 15564–15574 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Canolty, R.T. & Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    Article  Google Scholar 

  17. 17

    Schroeder, C.E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Atencio, C.A., Sharpee, T.O. & Schreiner, C.E. Cooperative nonlinearities in auditory cortical neurons. Neuron 58, 956–966 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Sakata, S. & Harris, K.D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Wang, X.J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  Google Scholar 

  21. 21

    Börgers, C., Epstein, S. & Kopell, N.J. Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc. Natl. Acad. Sci. USA 102, 7002–7007 (2005).

    Article  Google Scholar 

  22. 22

    Fries, P., Nikolic, D. & Singer, W. The gamma cycle. Trends Neurosci. 30, 309–316 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Kayser, C., Logothetis, N.K. & Panzeri, S. Millisecond encoding precision of auditory cortex neurons. Proc. Natl. Acad. Sci. USA 107, 16976–16981 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Chang, E.F. et al. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 13, 1428–1432 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Rauschecker, J.P. & Scott, S.K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Kopell, N. et al. Gamma and theta rhythms in biophysical models of hippocampal circuits. in Hippocampal Microcircuits: A Computational Modeller's Resource Book (eds. Cutsuridis, V., Graham, B.P., Cobb, S. & Vida, I.) Ch 15 (Springer, 2011).

  27. 27

    Shamir, M. et al. Representation of time-varying stimuli by a network exhibiting oscillations on a faster time scale. PLoS Comput. Biol. 5, e1000370 (2009).

    Article  Google Scholar 

  28. 28

    Atencio, C.A. & Schreiner, C.E. Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS ONE 5, e9521 (2010).

    Article  Google Scholar 

  29. 29

    Zatorre, R.J., Belin, P. & Penhune, V.B. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    Article  Google Scholar 

  30. 30

    Boemio, A. et al. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8, 389–395 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Jamison, H.L. et al. Hemispheric specialization for processing auditory nonspeech stimuli. Cereb. Cortex 16, 1266–1275 (2006).

    Article  Google Scholar 

  32. 32

    Obleser, J., Eisner, F. & Kotz, S.A. Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J. Neurosci. 28, 8116–8123 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Morillon, B. et al. Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl. Acad. Sci. USA 107, 18688–18693 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Telkemeyer, S. et al. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J. Neurosci. 29, 14726–14733 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Hutsler, J. & Galuske, R.A. Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci. 26, 429–435 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Gireesh, E.D. & Plenz, D. Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. USA 105, 7576–7581 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Pagnamenta, A.T. et al. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol. Psychiatry 68, 320–328 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Peschansky, V.J. et al. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cereb. Cortex 20, 884–897 (2010).

    Article  Google Scholar 

  39. 39

    Wang, Y. et al. Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience 190, 398–408 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15, 3–10 (2011).

    Article  Google Scholar 

  41. 41

    Ramus, F. & Szenkovits, G. What phonological deficit? Q. J. Exp. Psychol. (Hove) 61, 129–141 (2008).

    Article  Google Scholar 

  42. 42

    Ziegler, J.C. et al. Speech-perception-in-noise deficits in dyslexia. Dev. Sci. 12, 732–745 (2009).

    Article  Google Scholar 

  43. 43

    Lehongre, K. et al. Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron 72, 1080–1090 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Holcombe, A.O. Seeing slow and seeing fast: two limits on perception. Trends Cogn. Sci. 13, 216–221 (2009).

    Article  Google Scholar 

  46. 46

    Eliades, S.J. & Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453, 1102–1106 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Chandrasekaran, C. et al. Monkeys and humans share a common computation for face/voice integration. PLoS Comput. Biol. 7, e1002165 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Schroeder, C.E. et al. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20, 172–176 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Oberlaender, M. et al. Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex doi:10.1093/cercor/bhr317 (16 November 2011).

  50. 50

    Chi, T., Ru, P. & Shamma, S.A. Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am. 118, 887–906 (2005).

    Article  Google Scholar 

Download references


We are deeply grateful to C. Liegeois-Chauvel for providing stereotactic EEG data and C.-G. Bénar for related methodological support. In A.-L.G.'s team we thank Y. Beigneux, B. Morillon and L. Arnal, who analyzed these data; A. Hyafil, C. Kapdebon and L. Fontolan, who carried out the computational modeling work; and K. Lehongre and D. Roussillon, who conducted the experiments in human subjects. In D.P.'s team, we thank H. Luo, M. Howard and G. Cogan for pioneering work and many discussions of these issues. We also thank our colleagues O. Ghitza, S. Greenberg, B. Gutkin, V. Wyart, C. Lorenzi, F. Ramus and C. Schroeder for motivating and discussing various aspects of this research. This work is supported by the Centre National de la Recherche Scientifique of France and the European Research Council (A.-L.G.), and US National Institutes of Health grant 2R01 DC05660 (D.P.).

Author information



Corresponding author

Correspondence to Anne-Lise Giraud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giraud, AL., Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15, 511–517 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing