Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

Abstract

The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Firing patterns of thalamic neurons and their pallidal inputs during singing.
Figure 2: Simultaneous recordings of pallidal axon terminal and putative post-synaptic thalamic neurons during singing.
Figure 3: Song-locked rate modulations in thalamic neurons are also observed after basal ganglia lesions.
Figure 4: Anatomical verification of the RA projection to DLM in juvenile birds.
Figure 5: RA stimulation activates DLM neurons.
Figure 6: Singing-related firing patterns of corticothalamic RA neurons projecting to DLM.

Similar content being viewed by others

References

  1. Graybiel, A.M. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644 (2005).

    Article  CAS  Google Scholar 

  2. Reiner, A. You cannot have a vertebrate brain without a basal ganglia. in The Basal Ganglia IX (eds. Groenewegen, H.J., Voorn, P., Berendse, H.W., Mulder, A.B. & Cools, A.R.) 3–24 (Springer, New York, 2009).

  3. Hikosaka, O. GABAergic output of the basal ganglia. Prog. Brain Res. 160, 209–226 (2007).

    Article  CAS  Google Scholar 

  4. Chevalier, G. & Deniau, J.M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–280 (1990).

    Article  CAS  Google Scholar 

  5. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  Google Scholar 

  6. Kultas-Ilinsky, K., Sivan-Loukianova, E. & Ilinsky, I.A. Reevaluation of the primary motor cortex connections with the thalamus in primates. J. Comp. Neurol. 457, 133–158 (2003).

    Article  Google Scholar 

  7. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  8. Strick, P.L. Activity of ventrolateral thalamic neurons during arm movement. J. Neurophysiol. 39, 1032–1044 (1976).

    Article  CAS  Google Scholar 

  9. Anderson, M.E. & Turner, R.S. Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey. J. Neurophysiol. 66, 879–893 (1991).

    Article  CAS  Google Scholar 

  10. Inase, M., Buford, J.A. & Anderson, M.E. Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. J. Neurophysiol. 75, 1087–1104 (1996).

    Article  CAS  Google Scholar 

  11. Deniau, J.M., Lackner, D. & Feger, J. Effect of substantia nigra stimulation on identified neurons in the VL–VA thalamic complex: comparison between intact and chronically decorticated cats. Brain Res. 145, 27–35 (1978).

    Article  CAS  Google Scholar 

  12. Sherman, S.M. & Guillery, R.W. Exploring the Thalamus and Its Role in Cortical Function (MIT Press, Cambridge, Massachusetts, USA, 2006).

  13. Kunimatsu, J. & Tanaka, M. Roles of the primate motor thalamus in the generation of antisaccades. J. Neurosci. 30, 5108–5117 (2010).

    Article  CAS  Google Scholar 

  14. Bottjer, S.W., Miesner, E.A. & Arnold, A.P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

    Article  CAS  Google Scholar 

  15. Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991).

    Article  CAS  Google Scholar 

  16. Aronov, D., Andalman, A.S. & Fee, M.S. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320, 630–634 (2008).

    Article  CAS  Google Scholar 

  17. Goldberg, J.H. & Fee, M.S. Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia. J. Neurophysiol. 105, 2729–2739 (2011).

    Article  Google Scholar 

  18. Person, A.L. & Perkel, D.J. Pallidal neuron activity increases during sensory relay through thalamus in a songbird circuit essential for learning. J. Neurosci. 27, 8687–8698 (2007).

    Article  CAS  Google Scholar 

  19. Kojima, S. & Doupe, A.J. Activity propagation in an avian basal ganglia-thalamocortical circuit essential for vocal learning. J. Neurosci. 29, 4782–4793 (2009).

    Article  CAS  Google Scholar 

  20. Leblois, A., Bodor, A.L., Person, A.L. & Perkel, D.J. Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop. J. Neurosci. 29, 15420–15433 (2009).

    Article  CAS  Google Scholar 

  21. McFarland, N.R. & Haber, S.N. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J. Neurosci. 22, 8117–8132 (2002).

    Article  CAS  Google Scholar 

  22. Goldberg, J.H., Adler, A., Bergman, H. & Fee, M.S. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments. J. Neurosci. 30, 7088–7098 (2010).

    Article  CAS  Google Scholar 

  23. Llinas, R.R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    Article  Google Scholar 

  24. Jeanmonod, D., Magnin, M. & Morel, A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119, 363–375 (1996).

    Article  Google Scholar 

  25. Veit, L., Aronov, D. & Fee, M.S. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds. J. Neurophysiol. 106, 1747–1765 (2011).

    Article  Google Scholar 

  26. Aronov, D., Veit, L., Goldberg, J.H. & Fee, M.S. Two distinct modes of forebrain circuit dynamics underlie temporal patterning in the vocalizations of young songbirds. J. Neurosci. 31, 16353–16368 (2011).

    Article  CAS  Google Scholar 

  27. Luo, M. & Perkel, D.J.A. GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J. Neurosci. 19, 6700–6711 (1999).

    Article  CAS  Google Scholar 

  28. Wild, J.M. Descending projections of the songbird nucleus robustus archistriatalis. J. Comp. Neurol. 338, 225–241 (1993).

    Article  CAS  Google Scholar 

  29. Vates, G.E., Vicario, D.S. & Nottebohm, F. Reafferent thalamo-“cortical” loops in the song system of oscine songbirds. J. Comp. Neurol. 380, 275–290 (1997).

    Article  CAS  Google Scholar 

  30. Georgopoulos, A.P., DeLong, M.R. & Crutcher, M.D. Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J. Neurosci. 3, 1586–1598 (1983).

    Article  CAS  Google Scholar 

  31. Anderson, M.E. & Horak, F.B. Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J. Neurophysiol. 54, 433–448 (1985).

    Article  CAS  Google Scholar 

  32. Anderson, M.E. & Turner, R.S. A quantitative analysis of pallidal discharge during targeted reaching movement in the monkey. Exp. Brain Res. 86, 623–632 (1991).

    Article  CAS  Google Scholar 

  33. Yoshida, A. & Tanaka, M. Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus. Cereb. Cortex 19, 206–217 (2009).

    Article  Google Scholar 

  34. Sheth, S.A., Abuelem, T., Gale, J.T. & Eskandar, E.N. Basal ganglia neurons dynamically facilitate exploration during associative learning. J. Neurosci. 31, 4878–4885 (2011).

    Article  CAS  Google Scholar 

  35. Pare, D., Curro'Dossi, R. & Steriade, M. Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35, 217–226 (1990).

    Article  CAS  Google Scholar 

  36. Person, A.L. & Perkel, D.J. Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron 46, 129–140 (2005).

    Article  CAS  Google Scholar 

  37. Coulter, D.A., Huguenard, J.R. & Prince, D.A. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J. Physiol. (Lond.) 414, 587–604 (1989).

    Article  CAS  Google Scholar 

  38. Mink, J.W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  Google Scholar 

  39. Deniau, J.M. & Chevalier, G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res. 334, 227–233 (1985).

    Article  CAS  Google Scholar 

  40. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008).

    Article  CAS  Google Scholar 

  41. Vogels, T.P. & Abbott, L.F. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12, 483–491 (2009).

    Article  CAS  Google Scholar 

  42. Doupe, A.J., Perkel, D.J., Reiner, A. & Stern, E.A. Birdbrains could teach basal ganglia research a new song. Trends Neurosci. 28, 353–363 (2005).

    Article  CAS  Google Scholar 

  43. Andalman, A.S. & Fee, M.S. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc. Natl. Acad. Sci. USA 106, 12518–12523 (2009).

    Article  CAS  Google Scholar 

  44. Warren, T.L., Tumer, E.C., Charlesworth, J.D. & Brainard, M.S. Mechanisms and time course of vocal learning and consolidation in the adult songbird. J. Neurophysiol. 106, 1806–1821 (2011).

    Article  CAS  Google Scholar 

  45. Fee, M.S. & Goldberg, J.H. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198, 152–170 (2011).

    Article  CAS  Google Scholar 

  46. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  47. Pasupathy, A. & Miller, E.K. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433, 873–876 (2005).

    Article  CAS  Google Scholar 

  48. Jarvis, E.D. Learned birdsong and the neurobiology of human language. Ann. NY Acad. Sci. 1016, 749–777 (2004).

    Article  Google Scholar 

  49. Butler, A.B., Reiner, A. & Karten, H.J. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. NY Acad. Sci. 1225, 14–27 (2011).

    Article  Google Scholar 

  50. Foster, E.F., Mehta, R.P. & Bottjer, S.W. Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches. J. Comp. Neurol. 382, 364–381 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Graybiel and M. Farries for comments on the manuscript. This work was supported by grants from the US National Institutes of Health (R01DC009183 to M.S.F. and K99NS067062 to J.H.G.), and post-doctoral fellowships from the Charles King Trust and Damon Runyon Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.H.G. and M.S.F. designed the experiments and wrote the manuscript. J.H.G. conducted the experiments.

Corresponding author

Correspondence to Michale S Fee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 5461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, J., Fee, M. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds. Nat Neurosci 15, 620–627 (2012). https://doi.org/10.1038/nn.3047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing