Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction

Abstract

NMDA receptors (NMDARs) are glutamate-gated ion channels that are present at most excitatory mammalian synapses. The four GluN2 subunits (GluN2A–D) contribute to four diheteromeric NMDAR subtypes that have divergent physiological and pathological roles. Channel properties that are fundamental to NMDAR function vary among subtypes. We investigated the amino acid residues responsible for variations in channel properties by creating and examining NMDARs containing mutant GluN2 subunits. We found that the NMDAR subtype specificity of three crucial channel properties, Mg2+ block, selective permeability to Ca2+ and single-channel conductance, were all controlled primarily by the residue at a single GluN2 site in the M3 transmembrane region. Mutant cycle analysis guided by molecular modeling revealed that a GluN2-GluN1 subunit interaction mediates the site's effects. We conclude that a single GluN2 subunit residue couples with the pore-forming loop of the GluN1 subunit to create naturally occurring variations in NMDAR properties that are critical to synaptic plasticity and learning.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transmembrane topology and sequence alignment of NMDARs.
Figure 2: Search for GluN2 residues that affect the NMDAR subtype specificity of Mg2+ block.
Figure 3: The GluN2 S/L site regulates the NMDAR subtype specificity of Mg2+ block.
Figure 4: The GluN2 S/L site contributes to NMDAR subtype specificity of relative Ca2+ permeability.
Figure 5: The GluN2 S/L site controls the NMDAR subtype specificity of single-channel conductance.
Figure 6: Influence on Mg2+ inhibition of mutations at the GluN2 S/L site.
Figure 7: Homology model of the GluN1/2A receptor M2–M3 regions based on the NaK channel structure.
Figure 8: Mutant cycle examination of intersubunit interactions involved in NMDAR subtype specificity of Mg2+ block.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Lynch, M.A. Long-term potentiation and memory. Physiol. Rev. 84, 87–136 (2004).

    Article  CAS  Google Scholar 

  2. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  3. Sobolevsky, A.I., Beck, C. & Wollmuth, L.P. Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33, 75–85 (2002).

    Article  CAS  Google Scholar 

  4. Beck, C., Wollmuth, L.P., Seeburg, P.H., Sakmann, B. & Kuner, T. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22, 559–570 (1999).

    Article  CAS  Google Scholar 

  5. Ishii, T. et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843 (1993).

    CAS  PubMed  Google Scholar 

  6. Cull-Candy, S.G. & Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).

    PubMed  Google Scholar 

  7. Clinton, S.M. & Meador-Woodruff, J.H. Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29, 1353–1362 (2004).

    Article  CAS  Google Scholar 

  8. Yuan, H., Hansen, K.B., Vance, K.M., Ogden, K.K. & Traynelis, S.F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29, 12045–12058 (2009).

    Article  CAS  Google Scholar 

  9. Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J.W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).

    Article  CAS  Google Scholar 

  10. Kuner, T. & Schoepfer, R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J. Neurosci. 16, 3549–3558 (1996).

    Article  CAS  Google Scholar 

  11. Wrighton, D.C., Baker, E.J., Chen, P.E. & Wyllie, D.J. Mg2+ and memantine block of rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. (Lond.) 586, 211–225 (2008).

    Article  CAS  Google Scholar 

  12. Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. (Lond.) 485, 403–418 (1995).

    Article  CAS  Google Scholar 

  13. Schneggenburger, R. Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophys. J. 70, 2165–2174 (1996).

    Article  CAS  Google Scholar 

  14. Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221 (1992).

    Article  CAS  Google Scholar 

  15. Qian, A., Buller, A.L. & Johnson, J.W. NR2 subunit-dependence of NMDA receptor channel block by external Mg2+. J. Physiol. (Lond.) 562, 319–331 (2005).

    Article  CAS  Google Scholar 

  16. Lewis, C.A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (Lond.) 286, 417–445 (1979).

    Article  CAS  Google Scholar 

  17. Wollmuth, L.P. & Sakmann, B. Different mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. J. Gen. Physiol. 112, 623–636 (1998).

    Article  CAS  Google Scholar 

  18. Farrant, M., Feldmeyer, D., Takahashi, T. & Cull-Candy, S.G. NMDA receptor channel diversity in the developing cerebellum. Nature 368, 335–339 (1994).

    Article  CAS  Google Scholar 

  19. Cull-Candy, S.G. et al. NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology 37, 1369–1380 (1998).

    Article  CAS  Google Scholar 

  20. Stern, P., Cik, M., Colquhoun, D. & Stephenson, F.A. Single channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes. J. Physiol. (Lond.) 476, 391–397 (1994).

    Article  CAS  Google Scholar 

  21. Wyllie, D.J., Behe, P., Nassar, M., Schoepfer, R. & Colquhoun, D. Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc. Biol. Sci. 263, 1079–1086 (1996).

    Article  CAS  Google Scholar 

  22. Eswar, N. et al. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 2, 2.9 (2007).

    Google Scholar 

  23. Panchenko, V.A., Glasser, C.R. & Mayer, M.L. Structural similarities between glutamate receptor channels and K+ channels examined by scanning mutagenesis. J. Gen. Physiol. 117, 345–360 (2001).

    Article  CAS  Google Scholar 

  24. Wood, M.W., VanDongen, H.M. & VanDongen, A.M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 4882–4886 (1995).

    Article  CAS  Google Scholar 

  25. Tikhonov, D.B. Ion channels of glutamate receptors: structural modeling. Mol. Membr. Biol. 24, 135–147 (2007).

    Article  CAS  Google Scholar 

  26. Shi, N., Ye, S., Alam, A., Chen, L. & Jiang, Y. Atomic structure of a Na+- and K+-conducting channel. Nature 440, 570–574 (2006).

    Article  CAS  Google Scholar 

  27. Alam, A., Shi, N. & Jiang, Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. USA 104, 15334–15339 (2007).

    Article  CAS  Google Scholar 

  28. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  29. Cuello, L.G., Jogini, V., Cortes, D.M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  Google Scholar 

  30. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  31. Chen, G.Q., Cui, C., Mayer, M.L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  Google Scholar 

  32. Tikhonov, D.B., Mellor, J.R., Usherwood, P.N. & Magazanik, L.G. Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers. Biophys. J. 82, 1884–1893 (2002).

    Article  CAS  Google Scholar 

  33. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995).

    Article  CAS  Google Scholar 

  34. Schreiber, G. & Fersht, A.R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  35. Qian, A. & Johnson, J.W. Permeant ion effects on external Mg2+ block of NR1/2D NMDA receptors. J. Neurosci. 26, 10899–10910 (2006).

    Article  CAS  Google Scholar 

  36. Antonov, S.M. & Johnson, J.W. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+. Proc. Natl. Acad. Sci. USA 96, 14571–14576 (1999).

    Article  CAS  Google Scholar 

  37. Jones, K.S., VanDongen, H.M. & VanDongen, A.M. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22, 2044–2053 (2002).

    Article  CAS  Google Scholar 

  38. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  39. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  40. Kuner, T., Wollmuth, L.P., Karlin, A., Seeburg, P.H. & Sakmann, B. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352 (1996).

    Article  CAS  Google Scholar 

  41. Williams, K. et al. The selectivity filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+. Mol. Pharmacol. 53, 933–941 (1998).

    CAS  PubMed  Google Scholar 

  42. Chiu, J.C. et al. Phylogenetic and expression analysis of the glutamate receptor–like gene family in Arabidopsis thaliana. Mol. Biol. Evol. 19, 1066–1082 (2002).

    Article  CAS  Google Scholar 

  43. Sprengel, R. et al. Glutamate receptor channel signatures. Trends Pharmacol. Sci. 22, 7–10 (2001).

    Article  CAS  Google Scholar 

  44. Clarke, R.J. & Johnson, J. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J. Neurosci. 26, 5825–5834 (2006).

    Article  CAS  Google Scholar 

  45. Colquhoun, D. & Sigworth, F.J. Analysis of single ion channel data. in Single-Channel Recording (eds. B. Sakmann & E. Neher) 483–587 (Plenum Press, New York, 1995).

  46. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  47. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2011).

  48. Heiberger, R.M. & Holland, B. Statistical Analysis and Data Display: An Intermediate Course with Examples in S-plus, R, and SAS (Springer, New York, 2004).

  49. Fleming, W.W., Westfall, D.P., De la Lande, I.S. & Jellett, L.B. Log-normal distribution of equieffective doses of norepinephrine and acetylcholine in several tissues. J. Pharmacol. Exp. Ther. 181, 339–345 (1972).

    CAS  PubMed  Google Scholar 

  50. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Qian for valuable contributions to and advice on initial experiments, K. Bouch and C. Shiber for excellent technical assistance, M. Pellegrino for generous help with statistical analyses, M. Casio and A. Retchless for helpful discussions and comments on the manuscript, S. Meriney, M. Grabe, D. Wood and members of the Johnson laboratory for helpful discussions, and D. Colquhoun for making available the DC Analysis programs for single-channel analysis. This work was supported by US National Institutes of Health grants R01 MH045817 and associated S1 supplement (J.W.J.) and F31 MH079755 (B.S.R.).

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in experimental design and analysis, and in revision of the manuscript. B.S.R. and W.G. performed the experiments. B.S.R. and J.W.J. wrote the manuscript.

Corresponding author

Correspondence to Jon W Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Discussion (PDF 1544 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Retchless, B., Gao, W. & Johnson, J. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci 15, 406–413 (2012). https://doi.org/10.1038/nn.3025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing