Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval

Subjects

Abstract

The hippocampus is required for the encoding, consolidation and retrieval of event memories. Although the neural mechanisms that underlie these processes are only partially understood, a series of recent papers point to awake memory replay as a potential contributor to both consolidation and retrieval. Replay is the sequential reactivation of hippocampal place cells that represent previously experienced behavioral trajectories and occurs frequently in the awake state, particularly during periods of relative immobility. Awake replay may reflect trajectories through either the current environment or previously visited environments that are spatially remote. The repetition of learned sequences on a compressed time scale is well suited to promote memory consolidation in distributed circuits beyond the hippocampus, suggesting that consolidation occurs in both the awake and sleeping animal. Moreover, sensory information can influence the content of awake replay, suggesting a role for awake replay in memory retrieval.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Place cell sequences experienced during behavior are replayed in both the forward and reverse direction during awake SWRs.
Figure 2: Awake replay reinstates representations of both current and past experiences.
Figure 3: Spatial inputs could lead to retrieval of either local or remote sequences.

References

  1. 1

    Squire, L.R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Buzsáki, G. The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92 (1996).

    Article  Google Scholar 

  3. 3

    Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

    Article  Google Scholar 

  5. 5

    Nadel, L. & Moscovitch, M. The hippocampal complex and long-term memory revisited. Trends Cogn. Sci. 5, 228–230 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Jarrard, L.E. Retrograde amnesia and consolidation: anatomical and lesion considerations. Hippocampus 11, 43–49 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Squire, L.R. The neuropsychology of human memory. Annu. Rev. Neurosci. 5, 241–273 (1982).

    CAS  Article  Google Scholar 

  8. 8

    Cohen, N.J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, USA, 1993).

  9. 9

    Rudy, J.W. & Sutherland, R.J. Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5, 375–389 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Alvarez, P. & Squire, L.R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl. Acad. Sci. USA 91, 7041–7045 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Eichenbaum, H. & Cohen, N.J. From Conditioning to Conscious Recollection (Oxford Univ. Press, New York, 2001).

  12. 12

    Buzsáki, G. Hippocampal sharp waves: their origin and significance. Brain Res. 398, 242–252 (1986).

    Article  Google Scholar 

  13. 13

    Wilson, M.A. & McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Diekelmann, S. & Born, J. Slow-wave sleep takes the leading role in memory reorganization. Nat. Rev. Neurosci. 11, 218 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Nakashiba, T., Buhl, D.L., McHugh, T.J. & Tonegawa, S. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62, 781–787 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Skaggs, W.E. & McNaughton, B.L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Sutherland, G.R. & McNaughton, B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10, 180–186 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Kudrimoti, H.S., Barnes, C.A. & McNaughton, B.L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Squire, L.R., Clark, R.E. & Knowlton, B.J. Retrograde amnesia. Hippocampus 11, 50–55 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Fortin, N.J., Wright, S.P. & Eichenbaum, H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188–191 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Tulving, E. & Markowitsch, H.J. Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198–204 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Eldridge, L.L., Knowlton, B.J., Furmanski, C.S., Bookheimer, S.Y. & Engel, S.A. Remembering episodes: a selective role for the hippocampus during retrieval. Nat. Neurosci. 3, 1149–1152 (2000).

    CAS  Article  Google Scholar 

  23. 23

    de Hoz, L. & Wood, E.R. Dissociating the past from the present in the activity of place cells. Hippocampus 16, 704–715 (2006).

    Article  Google Scholar 

  24. 24

    Jones, M.W. & Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402 (2005).

    Article  Google Scholar 

  25. 25

    Benchenane, K. et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66, 921–936 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    CAS  Article  Google Scholar 

  27. 27

    O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Lubenov, E.V. & Siapas, A.G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Kjelstrup, K.B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Muller, R.U. & Stead, M. Hippocampal place cells connected by Hebbian synapses can solve spatial problems. Hippocampus 6, 709–719 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Karlsson, M.P. & Frank, L.M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    CAS  Article  Google Scholar 

  32. 32

    O'Neill, J., Pleydell-Bouverie, B., Dupret, D. & Csicsvari, J. Play it again: reactivation of waking experience and memory. Trends Neurosci. 33, 220–229 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Csicsvari, J., Hirase, H., Mamiya, A. & Buzsáki, G. Ensemble patterns of hippocampal CA3–CA1 neurons during sharp wave–associated population events. Neuron 28, 585–594 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsáki, G. Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci. 19, RC20 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).

    CAS  Article  Google Scholar 

  36. 36

    Buzsáki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    Article  Google Scholar 

  37. 37

    Buzsáki, G., Leung, L.W. & Vanderwolf, C.H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139–171 (1983).

    Article  Google Scholar 

  38. 38

    O'Neill, J., Senior, T. & Csicsvari, J. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49, 143–155 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Cheng, S. & Frank, L.M. New experiences enhance coordinated neural activity in the hippocampus. Neuron 57, 303–313 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Chrobak, J.J. & Buzsáki, G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J. Neurosci. 16, 3056–3066 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Siapas, A.G. & Wilson, M.A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Wierzynski, C.M., Lubenov, E.V., Gu, M. & Siapas, A.G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587–596 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Amaral, D.G., Ishizuka, N. & Claiborne, B. Neurons, numbers and the hippocampal network. Prog. Brain Res. 83, 1–11 (1990).

    CAS  Article  Google Scholar 

  44. 44

    Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. 262, 23–81 (1971).

    CAS  Article  Google Scholar 

  45. 45

    McNaughton, B.L. & Morris, R.G. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  46. 46

    Foster, D.J. & Wilson, M.A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Davidson, T.J., Kloosterman, F. & Wilson, M.A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Gupta, A.S., van der Meer, M.A., Touretzky, D.S. & Redish, A.D. Hippocampal replay is not a simple function of experience. Neuron 65, 695–705 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Csicsvari, J., O'Neill, J., Allen, K. & Senior, T. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur. J. Neurosci. 26, 704–716 (2007).

    Article  Google Scholar 

  51. 51

    O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, London, 1978).

  52. 52

    Lee, A.K. & Wilson, M.A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    CAS  Article  Google Scholar 

  53. 53

    Singer, A.C. & Frank, L.M. Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64, 910–921 (2009).

    CAS  Article  Google Scholar 

  54. 54

    Jackson, J.C., Johnson, A. & Redish, A.D. Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience. J. Neurosci. 26, 12415–12426 (2006).

    CAS  Article  Google Scholar 

  55. 55

    Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

  56. 56

    Bi, G.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS  Article  Google Scholar 

  57. 57

    O'Neill, J., Senior, T.J., Allen, K., Huxter, J.R. & Csicsvari, J. Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat. Neurosci. 11, 209–215 (2008).

    CAS  Article  Google Scholar 

  58. 58

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    CAS  Article  Google Scholar 

  59. 59

    Bouret, S. & Sara, S.J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    CAS  Article  Google Scholar 

  60. 60

    Giovannini, M.G. et al. Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106, 43–53 (2001).

    CAS  Article  Google Scholar 

  61. 61

    Jay, T.M. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog. Neurobiol. 69, 375–390 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    CAS  Article  Google Scholar 

  63. 63

    Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    CAS  Article  Google Scholar 

  64. 64

    Huang, Y.Y. & Kandel, E.R. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446–2450 (1995).

    CAS  Article  Google Scholar 

  65. 65

    Frey, U., Schroeder, H. & Matthies, H. Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 522, 69–75 (1990).

    CAS  Article  Google Scholar 

  66. 66

    Li, S., Cullen, W.K., Anwyl, R. & Rowan, M.J. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526–531 (2003).

    CAS  Article  Google Scholar 

  67. 67

    Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B. & Moser, E.I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004).

    CAS  Article  Google Scholar 

  68. 68

    Karlsson, M.P. & Frank, L.M. Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28, 14271–14281 (2008).

    CAS  Article  Google Scholar 

  69. 69

    Dupret, D., O'Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    CAS  Article  Google Scholar 

  70. 70

    Ego-Stengel, V. & Wilson, M.A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G. & Zugaro, M.B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  Article  Google Scholar 

  72. 72

    Chrobak, J.J. & Buzsáki, G. Selective activation of deep layer (V–VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J. Neurosci. 14, 6160–6170 (1994).

    CAS  Article  Google Scholar 

  73. 73

    Euston, D.R., Tatsuno, M. & McNaughton, B.L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    CAS  Article  Google Scholar 

  74. 74

    Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S.I. & Battaglia, F.P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009).

    CAS  Article  Google Scholar 

  75. 75

    Pennartz, C.M. et al. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J. Neurosci. 24, 6446–6456 (2004).

    CAS  Article  Google Scholar 

  76. 76

    Lansink, C.S., Goltstein, P.M., Lankelma, J.V., McNaughton, B.L. & Pennartz, C.M. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol. 7, e1000173 (2009).

    Article  Google Scholar 

  77. 77

    Hoffman, K.L. & McNaughton, B.L. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070–2073 (2002).

    CAS  Article  Google Scholar 

  78. 78

    Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    CAS  Article  Google Scholar 

  79. 79

    Abel, T. & Lattal, K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180–187 (2001).

    CAS  Article  Google Scholar 

  80. 80

    Johnson, A. & Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    CAS  Article  Google Scholar 

  81. 81

    van der Meer, M.A., Johnson, A., Schmitzer-Torbert, N.C. & Redish, A.D. Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67, 25–32 (2010).

    CAS  Article  Google Scholar 

  82. 82

    Frank, L.M., Stanley, G.B. & Brown, E.N. Hippocampal plasticity across multiple days of exposure to novel environments. J. Neurosci. 24, 7681–7689 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Loren M Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carr, M., Jadhav, S. & Frank, L. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14, 147–153 (2011). https://doi.org/10.1038/nn.2732

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing