Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

When size matters: attention affects performance by contrast or response gain

Abstract

Covert attention, the selective processing of visual information in the absence of eye movements, improves behavioral performance. We found that attention, both exogenous (involuntary) and endogenous (voluntary), can affect performance by contrast or response gain changes, depending on the stimulus size and the relative size of the attention field. These two variables were manipulated in a cueing task while stimulus contrast was varied. We observed a change in behavioral performance consonant with a change in contrast gain for small stimuli paired with spatial uncertainty and a change in response gain for large stimuli presented at one location (no uncertainty) and surrounded by irrelevant flanking distracters. A complementary neuroimaging experiment revealed that observers' attention fields were wider with than without spatial uncertainty. Our results support important predictions of the normalization model of attention and reconcile previous, seemingly contradictory findings on the effects of visual attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normalization model of attention exhibits qualitatively different forms of attentional modulation, depending on stimulus size and attention field size (adapted from ref. 1).
Figure 2: Experimental protocols.
Figure 3: Effects of exogenous and endogenous attention on performance (d′) as a function of contrast.
Figure 4: Effects of stimulus and attention field size on parameter estimates of individual observers.
Figure 5: Attention field size depends on spatial uncertainty.

Similar content being viewed by others

References

  1. Reynolds, J.H. & Heeger, D.J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  Google Scholar 

  2. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  Google Scholar 

  3. Carrasco, M. Covert attention increases contrast sensitivity: psychophysical, neurophysiological and neuroimaging studies. Prog. Brain Res. 154, 33–70 (2006).

    Article  Google Scholar 

  4. Boynton, G.M. A framework for describing the effects of attention on visual responses. Vision Res. 49, 1129–1143 (2009).

    Article  Google Scholar 

  5. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  6. McAdams, C.J. & Maunsell, J.H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  7. Pestilli, F. & Carrasco, M. Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Res. 45, 1867–1875 (2005).

    Article  Google Scholar 

  8. Pestilli, F., Viera, G. & Carrasco, M. How do attention and adaptation affect contrast sensitivity? J. Vis. 7, 9 1–12 (2007).

    Article  Google Scholar 

  9. Ling, S. & Carrasco, M. Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Res. 46, 1210–1220 (2006).

    Article  Google Scholar 

  10. Pestilli, F., Ling, S. & Carrasco, M. A population-coding model of attention's influence on contrast response: estimating neural effects from psychophysical data. Vision Res. 49, 1144–1153 (2009).

    Article  Google Scholar 

  11. Morrone, M.C., Denti, V. & Spinelli, D. Color and luminance contrasts attract independent attention. Curr. Biol. 12, 1134–1137 (2002).

    Article  CAS  Google Scholar 

  12. Morrone, M.C., Denti, V. & Spinelli, D. Different attentional resources modulate the gain mechanisms for color and luminance contrast. Vision Res. 44, 1389–1401 (2004).

    Article  CAS  Google Scholar 

  13. Li, X., Lu, Z.L., Tjan, B.S., Dosher, B.A. & Chu, W. Blood oxygenation level–dependent contrast response functions identify mechanisms of covert attention in early visual areas. Proc. Natl. Acad. Sci. USA 105, 6202–6207 (2008).

    Article  CAS  Google Scholar 

  14. Martínez-Trujillo, J. & Treue, S. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35, 365–370 (2002).

    Article  Google Scholar 

  15. Reynolds, J.H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  Google Scholar 

  16. Buracas, G.T. & Boynton, G.M. The effect of spatial attention on contrast response functions in human visual cortex. J. Neurosci. 27, 93–97 (2007).

    Article  CAS  Google Scholar 

  17. Williford, T. & Maunsell, J.H. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol. 96, 40–54 (2006).

    Article  Google Scholar 

  18. Huang, L. & Dobkins, K.R. Attentional effects on contrast discrimination in humans: evidence for both contrast gain and response gain. Vision Res. 45, 1201–1212 (2005).

    Article  Google Scholar 

  19. Lee, J. & Maunsell, J.H. A normalization model of attentional modulation of single unit responses. PLoS ONE 4, e4651 (2009).

    Article  Google Scholar 

  20. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  21. Datta, R. & DeYoe, E.A. I know where you are secretly attending! The topography of human visual attention revealed with fMRI. Vision Res. 49, 1037–1044 (2009).

    Article  Google Scholar 

  22. Eriksen, C.W. & St James, J.D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  CAS  Google Scholar 

  23. Müller, N.G., Bartelt, O.A., Donner, T.H., Villringer, A. & Brandt, S.A. A physiological correlate of the “Zoom Lens” of visual attention. J. Neurosci. 23, 3561–3565 (2003).

    Article  Google Scholar 

  24. Castiello, U. & Umilta, C. Size of the attentional focus and efficiency of processing. Acta Psychol. (Amst.) 73, 195–209 (1990).

    Article  CAS  Google Scholar 

  25. Ling, S. & Carrasco, M. When sustained attention impairs perception. Nat. Neurosci. 9, 1243–1245 (2006).

    Article  CAS  Google Scholar 

  26. Lu, Z.L. & Dosher, B.A. Spatial attention: different mechanisms for central and peripheral temporal precues? J. Exp. Psychol. Hum. Percept. Perform. 26, 1534–1548 (2000).

    Article  CAS  Google Scholar 

  27. Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vision Res. 29, 1631–1647 (1989).

    Article  CAS  Google Scholar 

  28. Liu, T., Pestilli, F. & Carrasco, M. Transient attention enhances perceptual performance and fMRI response in human visual cortex. Neuron 45, 469–477 (2005).

    Article  CAS  Google Scholar 

  29. Giordano, A.M., McElree, B. & Carrasco, M. On the automaticity and flexibility of covert attention: a speed-accuracy trade-off analysis. J. Vis. 9, 30 31–10 (2009).

    Article  Google Scholar 

  30. Yeshurun, Y., Montagna, B. & Carrasco, M. On the flexibility of sustained attention and its effects on a texture segmentation task. Vision Res. 48, 80–95 (2008).

    Article  Google Scholar 

  31. Jonides, J. & Irwin, D.E. Capturing attention. Cognition 10, 145–150 (1981).

    Article  CAS  Google Scholar 

  32. Sclar, G., Maunsell, J.H. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    Article  CAS  Google Scholar 

  33. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  34. Gandhi, S.P., Heeger, D.J. & Boynton, G.M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  Google Scholar 

  35. Tootell, R.B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  36. Brefczynski, J.A. & DeYoe, E.A. A physiological correlate of the 'spotlight' of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    Article  CAS  Google Scholar 

  37. Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 1663–1668 (1999).

    Article  CAS  Google Scholar 

  38. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  Google Scholar 

  39. Katkov, M., Tsodyks, M. & Sagi, D. Inverse modeling of human contrast response. Vision Res. 47, 2855–2867 (2007).

    Article  Google Scholar 

  40. Dean, A.F. The variability of discharge of simple cells in the cat striate cortex. Exp. Brain Res. 44, 437–440 (1981).

    Article  CAS  Google Scholar 

  41. Carandini, M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol. 2, e264 (2004).

    Article  Google Scholar 

  42. Heeger, D.J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    Article  CAS  Google Scholar 

  43. Logothetis, N.K. & Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    Article  CAS  Google Scholar 

  44. Bartels, A., Logothetis, N.K. & Moutoussis, K. fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci. 31, 444–453 (2008).

    Article  CAS  Google Scholar 

  45. Hernandez, M., Costa, A. & Humphreys, G.W. The size of an attentional window affects working memory guidance. Atten. Percept. Psychophys. 72, 963–972.

  46. Belopolsky, A.V., Zwaan, L., Theeuwes, J. & Kramer, A.F. The size of an attentional window modulates attentional capture by color singletons. Psychon. Bull. Rev. 14, 934–938 (2007).

    Article  Google Scholar 

  47. Liu, T., Stevens, S.T. & Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vision Res. 47, 108–113 (2007).

    Article  Google Scholar 

  48. Sperling, G.D.B.A. (ed.) Handbook of Perception and Human Performance, 1–65 (John Wiley & Sons, 1986).

  49. Wandell, B.A., Dumoulin, S.O. & Brewer, A.A. Visual field maps in human cortex. Neuron 56, 366–383 (2007).

    Article  CAS  Google Scholar 

  50. Donner, T.H., Sagi, D., Bonneh, Y.S. & Heeger, D.J. Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci. 28, 10298–10310 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mike Landy and members of the Carrasco and Heeger laboratories for their helpful comments. The psychophysical experiments were presented at the Annual Meeting of the Vision Science Society (2009) and the European Conference on Visual Perception (2009). This work was supported by US National Institutes of Health grants R01-EY019693 (D.J.H. and M.C.), R01-MH06980 (D.J.H.) and R01-EY016200 (M.C.).

Author information

Authors and Affiliations

Authors

Contributions

K.H. programmed, conducted and analyzed the experiments and co-wrote the manuscript. L.M.-K. conducted and analyzed the psychophysics experiments and assisted in conducting and programming the fMRI experiment. M.C. and D.J.H. conceived and supervised the project and co-wrote the manuscript.

Corresponding author

Correspondence to David J Heeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1 and 2 (PDF 403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. et al. When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13, 1554–1559 (2010). https://doi.org/10.1038/nn.2669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing