Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A subset of octopaminergic neurons are important for Drosophila aggression

Abstract

Aggression is an innate behavior that is important for animal survival and evolution. We examined the molecular and cellular mechanisms underlying aggression in Drosophila. Reduction of the neurotransmitter octopamine, the insect equivalent of norepinephrine, decreased aggression in both males and females. Mutants lacking octopamine did not initiate fighting and did not fight other flies, although they still provoked other flies to fight themselves. Mutant males lost to the wild-type males in fighting and in competing for copulation with females. Enhanced octopaminergic signaling increased aggression in socially grouped flies, but not in socially isolated flies. We carried out genetic rescue experiments that revealed the functional importance of neuronal octopamine and identified a small subset of octopaminergic neurons in the suboesophageal ganglion as being important for aggression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of the Tβh mutation on male and female aggression.
Figure 2: General behavioral characterization of TβhnM18 mutants.
Figure 3: Effects of CDM and TβH overexpression on aggression.
Figure 4: Effect of activating octopaminergic neurons on aggression.
Figure 5: Rescue of aggression phenotype in TβhnM18 mutants by TβH expression in octopaminergic neurons.
Figure 6: A small subset of octopaminergic neurons involved in aggression.

Similar content being viewed by others

References

  1. Darwin, C. The Descent of Man and Selection in Relation to Sex (John Murray, London, England, 1871).

    Book  Google Scholar 

  2. Lorenz, K.Z. On Aggression (Harcourt, Brace and World, New York, 1963).

    Google Scholar 

  3. Scott, J.P. Genetic differences in the social behavior of inbred strains of mice. J. Hered. 33, 11–15 (1942).

    Article  Google Scholar 

  4. Brunner, H.G., Nelen, M., Breakefield, X.O., Ropers, H.H. & van Oost, B.A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).

    Article  CAS  Google Scholar 

  5. Sturtevant, A.H. Experiments on sex recognition and the problem of sexual selection in Drosophila. Anim. Behav. 5, 351–366 (1915).

    Article  Google Scholar 

  6. Jacobs, M.E. Influence of light on mating of Drosophila melanogaster. Ecology 41, 182–188 (1960).

    Article  Google Scholar 

  7. Dow, M.A. & von Schilcher, F. Aggression and mating success in Drosophila melanogaster. Nature 254, 511–512 (1975).

    Article  CAS  Google Scholar 

  8. Jacobs, M.E. Influence of β-alanine on mating and territorialism in Drosophila melanogaster. Behav. Genet. 8, 487–502 (1978).

    Article  CAS  Google Scholar 

  9. Hoffmann, A.A. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Anim. Behav. 35, 807–818 (1987).

    Article  Google Scholar 

  10. Hoffmann, A.A. Territorial encounters between Drosophila males of different sizes. Anim. Behav. 35, 1899–1901 (1987).

    Article  Google Scholar 

  11. Hoffmann, A.A. Geographic variation in the territorial success of Drosophila melanogaster males. Behav. Genet. 19, 241–255 (1989).

    Article  CAS  Google Scholar 

  12. Hoffmann, A.A. The influence of age and experience with conspecifics on territorial behaviour in Drosophila melanogaster. J. Insect Behav. 3, 1–12 (1990).

    Article  Google Scholar 

  13. Hoffmann, A.A. & Cacoyianni, Z. Selection for territoriality in Drosophila melanogaster: correlated responses in mating success and other fitness components. Anim. Behav. 38, 23–34 (1989).

    Article  Google Scholar 

  14. Hoffmann, A.A. & Cacoyianni, Z. Territoriality in Drosophila melanogaster as a conditional strategy. Anim. Behav. 40, 526–537 (1990).

    Article  Google Scholar 

  15. Ueda, A. & Kidokoro, Y. Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol. Entomol. 27, 21–28 (2002).

    Article  Google Scholar 

  16. Nilsen, S.P., Chan, Y.B., Huber, R. & Kravitz, E.A. Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 101, 12342–12347 (2004).

    Article  CAS  Google Scholar 

  17. Vrontou, E., Nilsen, S.P., Demir, E., Kravitz, E.A. & Dickson, B.J. fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9, 1469–1471 (2006).

    Article  CAS  Google Scholar 

  18. Dierick, H.A. & Greenspan, R.J. Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38, 1023–1031 (2006).

    Article  CAS  Google Scholar 

  19. Edwards, A.C., Rollmann, S.M., Morgan, T.J. & Mackay, T.F. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2, e154 (2006).

    Article  Google Scholar 

  20. Dierick, H.A. & Greenspan, R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 39, 678–682 (2007).

    Article  CAS  Google Scholar 

  21. Livingstone, M.S., Harris-Warrick, R.M. & Kravitz, E.A. Serotonin and octopamine produce opposite postures in lobsters. Science 208, 76–79 (1980).

    Article  CAS  Google Scholar 

  22. Edwards, D.H. & Kravitz, E.A. Serotonin, social status and aggression. Curr. Opin. Neurobiol. 7, 812–819 (1997).

    Article  CAS  Google Scholar 

  23. Stevenson, P.A., Hofmann, H.A., Schoch, K. & Schildberger, K. The fight and flight responses of crickets depleted of biogenic amines. J. Neurobiol. 43, 107–120 (2000).

    Article  CAS  Google Scholar 

  24. Stevenson, P.A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).

    Article  CAS  Google Scholar 

  25. Baier, A., Wittek, B. & Brembs, B. Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205, 1233–1240 (2002).

    PubMed  Google Scholar 

  26. Certel, S.J., Savella, M.G., Schlegel, D.C. & Kravitz, E.A. Modulation of Drosophila male behavioral choice. Proc. Natl. Acad. Sci. USA 104, 4706–4711 (2007).

    Article  CAS  Google Scholar 

  27. Hoyer, S.C. et al. Octopamine in male aggression of Drosophila. Curr. Biol. 18, 159–167 (2008).

    Article  CAS  Google Scholar 

  28. Monastirioti, M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 38–49 (2003).

    Article  CAS  Google Scholar 

  29. Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003).

    Article  CAS  Google Scholar 

  30. Valzelli, L. Aggressive behavior induced by isolation. in Aggressive Behavior (Eds. Garattini, S. and Sigg, E.B.) 70–76 (Wiley, New York, 1969).

    Google Scholar 

  31. Wang, L., Heiko Dankert, H., Perona, P. & Anderson, D.J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc. Natl. Acad. Sci. USA 105, 5657–5663 (2008).

    Article  CAS  Google Scholar 

  32. Chen, S., Lee, A.Y., Bowens, N.M., Huber, R. & Kravitz, E.A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl. Acad. Sci. USA 99, 5664–5668 (2002).

    Article  CAS  Google Scholar 

  33. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  Google Scholar 

  34. Villella, A. et al. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 147, 1107–1130 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Luan, H. et al. Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J. Neurosci. 26, 573–584 (2006).

    Article  CAS  Google Scholar 

  36. Cole, S.H. et al. Two functional, but noncomplementing, Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280, 14948–14955 (2005).

    Article  CAS  Google Scholar 

  37. Kitamoto, T. Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proc. Natl. Acad. Sci. USA 99, 13232–13237 (2002).

    Article  CAS  Google Scholar 

  38. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  Google Scholar 

  39. Kravitz, E.A. Hormonal control of behavior: amines and the biasing of behavioural output in lobsters. Science 241, 1775–1781 (1988).

    Article  CAS  Google Scholar 

  40. Adamo, S.A., Linn, C.E. & Hoy, R.R. The role of neurohormonal octopamine during 'fight or flight' behaviour in the field cricket Gryllus bimaculatus. J. Exp. Biol. 198, 1691–1700 (1995).

    CAS  PubMed  Google Scholar 

  41. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005).

    Article  CAS  Google Scholar 

  42. Sallinen, J., Haapalinna, A., Viitamaa, T., Kobilka, B.K. & Scheinin, M. Adrenergic α2C-receptors modulate the acoustic startle reflex, prepulse inhibition and aggression in mice. J. Neurosci. 18, 3035–3042 (1998).

    Article  CAS  Google Scholar 

  43. Marino, M.D., Bourdelat-Parks, B.N., Cameron Liles, L. & Weinshenker, D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav. Brain Res. 161, 197–203 (2005).

    Article  CAS  Google Scholar 

  44. Bray, S. & Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019–1029 (2003).

    Article  CAS  Google Scholar 

  45. Svetec, N. & Ferveur, J.F. Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J. Exp. Biol. 208, 891–898 (2005).

    Article  Google Scholar 

  46. Kulkarni, S.J. & Hall, J.C. Behavioral and cytogenetic analysis of the cacophony courtship song mutant and interacting genetic variants in Drosophila melanogaster. Genetics 115, 461–475 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Anholt, R.R., Lyman, R.F. & Mackay, T.F. Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143, 293–301 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Zhou and the Antibody Center of the National Institute of Biological Sciences for the antibody to TβH; J. Hirsh, M. Monastirioti, P. Shen, B. White, C.-F. Wu, R. Greenspan, P. Salvaterra, T. Kitamoto and the Bloomington Stock Center for fly stocks; X. Wu for participation in early experiments; Y. Jiang for help with statistics; X. Jia for technical assistance; and the Rao lab members for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 463 kb)

Supplementary Video 1

The chamber contains a wild-type fly painted red and a Tβhnm18 mutant fly painted yellow. The wild type often occupied the central food pad and chased after the Tβhnm18 mutant, preventing the latter from walking onto the food pad. The Tβhnm18 mutant was usually forced off and wandered along the wall of the fighting chamber. When the Tβhnm18 mutant had the chance of entering the territory with food, fighting was initiated and intensive lunging directed by the wild type towards the intruder Tβhnm18 mutant was often followed until the loser was forced off the food pad again. (MPG 2880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Rao, Y. & Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11, 1059–1067 (2008). https://doi.org/10.1038/nn.2164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2164

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing