Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the design of CRISPR-based single-cell molecular screens

Abstract

Several groups recently coupled CRISPR perturbations and single-cell RNA-seq for pooled genetic screens. We demonstrate that vector designs of these studies are susceptible to 50% swapping of guide RNA–barcode associations because of lentiviral template switching. We optimized a published alternative, CROP-seq, in which the guide RNA also serves as the barcode, and here confirm that this strategy performs robustly and doubled the rate at which guides are assigned to cells to 94%.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Template switching decreases the sensitivity of CRISPR-based single-cell molecular screens that employ linked barcodes.
Figure 2: CROP-seq with PCR enrichment offers improvements over alternate screen designs in a tumor suppressor knockout screen.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Shalem, O., Sanjana, N.E. & Zhang, F. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  Google Scholar 

  2. Mohr, S.E., Smith, J.A., Shamu, C.E., Neumüller, R.A. & Perrimon, N. Nat. Rev. Mol. Cell Biol. 15, 591–600 (2014).

    Article  CAS  Google Scholar 

  3. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G.C. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  Google Scholar 

  4. Adamson, B. et al. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  Google Scholar 

  5. Dixit, A. et al. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  Google Scholar 

  6. Jaitin, D.A. et al. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  Google Scholar 

  7. Datlinger, P. et al. Nat. Methods 14, 297–301 (2017).

    Article  CAS  Google Scholar 

  8. Nikolaitchik, O.A. et al. PLoS Pathog. 9, e1003249 (2013).

    Article  CAS  Google Scholar 

  9. Tseng, W.C., Haselton, F.R. & Giorgio, T.D. J. Biol. Chem. 272, 25641–25647 (1997).

    Article  CAS  Google Scholar 

  10. Jetzt, A.E. et al. J. Virol. 74, 1234–1240 (2000).

    Article  CAS  Google Scholar 

  11. Schlub, T.E., Smyth, R.P., Grimm, A.J., Mak, J. & Davenport, M.P. PLoS Comput. Biol. 6, e1000766 (2010).

    Article  Google Scholar 

  12. Sack, L.M., Davoli, T., Xu, Q., Li, M.Z. & Elledge, S.J. G3 (Bethesda) 6, 2781–2790 (2016).

    Article  CAS  Google Scholar 

  13. Yu, H., Jetzt, A.E., Ron, Y., Preston, B.D. & Dougherty, J.P. J. Biol. Chem. 273, 28384–28391 (1998).

    Article  CAS  Google Scholar 

  14. el-Deiry, W.S. et al. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  15. Contente, A., Dittmer, A., Koch, M.C., Roth, J. & Dobbelstein, M. Nat. Genet. 30, 315–320 (2002).

    Article  Google Scholar 

  16. Gasperini, M. et al. Am. J. Hum. Genet. 101, 192–205 (2017).

    Article  CAS  Google Scholar 

  17. Han, K. et al. Nat. Biotechnol. 35, 463–474 (2017).

    Article  CAS  Google Scholar 

  18. Lukoszek, R., Mueller-Roeber, B. & Ignatova, Z. FEBS Lett. 587, 3692–3695 (2013).

    Article  CAS  Google Scholar 

  19. Yeganeh, M., Praz, V., Cousin, P. & Hernandez, N. Genes Dev. 31, 413–421 (2017).

    Article  CAS  Google Scholar 

  20. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  21. Sanjana, N.E., Shalem, O. & Zhang, F. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

  22. Chen, B. et al. Cell 155, 1479–1491 (2013).

    Article  CAS  Google Scholar 

  23. McKenna, A. et al. Science 353, aaf7907 (2016).

    Article  Google Scholar 

  24. Dixit, A. Preprint at https://www.biorxiv.org/content/early/2016/12/12/093237 (2016).

  25. Qiu, X. et al. Nat. Methods 14, 309–315 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Shendure and Trapnell labs for feedback on our manuscript and helpful discussions, particularly S. Srivatsan, G. Findlay, A. McKenna, R. Daza, B. Martin, M. Kircher, D. Cusanovich, X. Qiu, and V. Ramani. We thank J. Bloom and D. Fowler for discussions about lentivirus, and K. Han, J. Ousey, and M. Bassik for experimental advice and reagents for CRISPRi experiments. A.J.H. thanks Stella the cat for support. This work was supported by the following funding: NIH DP1HG007811 and UM1HG009408 (to J.S.), DP2HD088158 (to C.T.), and the W.M. Keck Foundation (to C.T. and J.S.). A.J.H. and M.J.G. are funded by the National Science Foundation Graduate Research Fellowship. J.L.M. is supported by the NIH Genome Training Grant (5T32HG000035) and the Cardiovascular Research Training Grant (4T32HL007828). C.T. is partly supported by an Alfred P. Sloan Foundation Research Fellowship. J.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.J.H., J.L.M.-F., J.S., and C.T. devised the project. A.J.H., J.L.M.-F., L.M.S., and M.J.G. performed experiments. D.J. optimized cloning strategies and provided substantial technical support. A.J.H., J.L.M.-F., and J.P. performed analysis. K.A.M. provided critical input on mechanisms of template switching in lentivirus. A.J.H., J.L.M., J.S. and C.T. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Jay Shendure or Cole Trapnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, A., McFaline-Figueroa, J., Starita, L. et al. On the design of CRISPR-based single-cell molecular screens. Nat Methods 15, 271–274 (2018). https://doi.org/10.1038/nmeth.4604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4604

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research