Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid, optimized interactomic screening

Abstract

We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the parallelized affinity capture procedure.
Figure 2: Extraction condition design and copurification pattern analysis.
Figure 3: Nuclear pore complex (NPC) purification from single proteins to macromolecular assemblies.
Figure 4: Affinity capture strategy implementation on different protein complexes, affinity tags and model organisms.
Figure 5: In-depth analysis of Rtn1p affinity capture.

Similar content being viewed by others

References

  1. Brockhurst, M.A., Colegrave, N. & Rozen, D.E. Next-generation sequencing as a tool to study microbial evolution. Mol. Ecol. 20, 972–980 (2011).

    Article  PubMed  Google Scholar 

  2. Ross, J.S. & Cronin, M. Whole cancer genome sequencing by next-generation methods. Am. J. Clin. Pathol. 136, 527–539 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Charbonnier, S., Gallego, O. & Gavin, A.-C. The social network of a cell: recent advances in interactome mapping. Biotechnol. Annu. Rev. 14, 1–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Collins, M.O. & Choudhary, J.S. Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr. Opin. Biotechnol. 19, 324–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Kiemer, L. & Cesareni, G. Comparative interactomics: comparing apples and pears? Trends Biotechnol. 25, 448–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Williamson, M.P. & Sutcliffe, M.J. Protein-protein interactions. Biochem. Soc. Trans. 38, 875–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. del Sol, A., Balling, R., Hood, L. & Galas, D. Diseases as network perturbations. Curr. Opin. Biotechnol. 21, 566–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Stumpf, M.P.H. et al. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA 105, 6959–6964 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Menche, J. et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347, 1257601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. LaCava, J. et al. Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. Biotechniques 58, 103–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell, A.W., Nilsson, T., Kearney, R.E. & Bergeron, J.J.M. The protein microscope: incorporating mass spectrometry into cell biology. Nat. Methods 4, 783–784 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Devos, D. & Russell, R.B. A more complete, complexed and structured interactome. Curr. Opin. Struct. Biol. 17, 370–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Breitkreutz, B.-J. et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 36, D637–D640 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Armean, I.M., Lilley, K.S. & Trotter, M.W.B. Popular computational methods to assess multiprotein complexes derived from label-free affinity purification and mass spectrometry (AP-MS) experiments. Mol. Cell. Proteomics 12, 1–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Pardo, M. & Choudhary, J.S. Assignment of protein interactions from affinity purification/mass spectrometry data. J. Proteome Res. 11, 1462–1474 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Trinkle-Mulcahy, L. et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183, 223–239 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Babu, M. et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489, 585–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  20. Chayen, N.E. High-throughput protein crystallization. Adv. Protein Chem. Struct. Biol. 77, 1–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Oeffinger, M. et al. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 4, 951–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Domanski, M. et al. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. Biotechniques 0, 1–6 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Machesky, L.M. & Gould, K.L. The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11, 117–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Moseley, J.B. & Goode, B.L. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, S.-L., Needham, K.M., May, J.R. & Nolen, B.J. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J. Biol. Chem. 286, 17039–17046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duncan, M.C., Cope, M.J., Goode, B.L., Wendland, B. & Drubin, D.G. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 3, 687–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Moreau, V., Galan, J.M., Devilliers, G., Haguenauer-Tsapis, R. & Winsor, B. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis. Mol. Biol. Cell 8, 1361–1375 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, H.Y., Munn, A. & Cai, M. EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 4294–4304 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitchell, P. et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol. Cell. Biol. 23, 6982–6992 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wasmuth, E.V. & Lima, C.D. Structure and activities of the eukaryotic RNA exosome. Enzymes 31, 53–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Synowsky, S.A., van den Heuvel, R.H.H., Mohammed, S., Pijnappel, P.W.W.M. & Heck, A.J.R. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol. Cell. Proteomics 5, 1581–1592 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gottschalk, A. et al. A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA 4, 374–393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Blanc, A., Goyer, C. & Sonenberg, N. The coat protein of the yeast double-stranded-RNA virus L-A attaches covalently to the cap structure of eukaryotic messenger-RNA. Mol. Cell. Biol. 12, 3390–3398 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Görnemann, J. et al. Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. RNA 17, 2119–2129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Craene, J.-O. et al. Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol. Biol. Cell 17, 3009–3020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dawson, T.R., Lazarus, M.D., Hetzer, M.W. & Wente, S.R. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 184, 659–675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Helbig, A.O., Heck, A.J.R. & Slijper, M. Exploring the membrane proteome—challenges and analytical strategies. J. Proteomics 73, 868–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Creutz, C.E., Snyder, S.L. & Schulz, T.A. Characterization of the yeast tricalbins: membrane-bound multi-C2-domain proteins that form complexes involved in membrane trafficking. Cell. Mol. Life Sci. 61, 1208–1220 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tackett, A.J. et al. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 4, 1752–1756 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Manford, A.G., Stefan, C.J., Yuan, H.L., Macgurn, J.A. & Emr, S.D. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23, 1129–1140 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M. & Rapoport, T.A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  PubMed  Google Scholar 

  49. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ebright, R.H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Sukhodolets, M.V., Cabrera, J.E., Zhi, H.J. & Jin, D.J. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev. 15, 3330–3341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Andersen, P.R. et al. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol. 20, 1367–1376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anonymous. The call of the human proteome. Nat. Methods 7, 661 (2010).

  57. Gauci, V.J., Wright, E.P. & Coorssen, J.R. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J. Chem. Biol. 4, 3–29 (2011).

    Article  PubMed  Google Scholar 

  58. Candiano, G. et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327–1333 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Chambers, M.C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ward, J.H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    Article  Google Scholar 

  62. Sokal, R.R. & Rohlf, F.J. The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962).

    Article  Google Scholar 

  63. Pettersen, E.F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Wessel, D. & Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).

  67. Ellison, A.M. Effect of seed dimorphism on the density-dependent dynamics of experimental populations of Atriplex triangularis (Chenopodiaceae). Am. J. Bot. 74, 1280–1288 (1987).

    Article  Google Scholar 

  68. Statistical Analysis System Institute. SAS/STAT User's Guide (SAS, 1990).

  69. Hartigan, J.A. & Hartigan, P.M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Article  Google Scholar 

  70. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  71. Benaglia, T., Chauveau, D., Hunter, D.R. & Young, D.S. mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank The Rockefeller University High Energy Physics Instrument Shop for diligence in custom apparatus design and fabrication; X. Wang for assistance with MS data analysis; and members of the Chait, Jensen and Rout laboratories for help and discussion. I. Poser and A. Hyman (Max Planck Institute of Molecular Biology and Genetics, Dresden) provided the RBM7-LAP cell line. This work was funded by the US National Institutes of Health (NIH) grant nos. U54 GM103511 and P41 GM109824 (J.D.A., B.T.C. and M.P.R.), P50 GM076547 (J.D.A.) and P41 GM103314 (B.T.C.); the Lundbeck Foundation (to T.H.J. and J.L.) and the Danish National Research Foundations (to T.H.J.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and M.P.R. conceived the screening strategy; J.L. carried out proof-of-concept experiments, assisted by L.E.H.; L.E.H. and V.S. designed manifolds, which were fabricated by V.S. and tested by L.E.H., J.L. and Z.H.; filters were designed by A.A.O., A.R.O. and J.L., fabricated by A.A.O. and A.R.O., and tested by J.L. and Z.H.; J.L., Z.H. and M.D. designed experiments, executed screens and further developed procedures—with yeast work primarily carried out by Z.H. and human cell line work primarily carried out by M.D.; MS analyses were carried out by J.L., Z.H. and K.R.M., with I-DIRT done by Z.H.; transposing the procedure to robotic automation was carried out by D.J.D. assisted by J.L.; J.L., Z.H. and D.F. conceived of the protein copurification gel database and software, which was built by S.K. and D.F. with testing and feedback from J.L. and Z.H.; J.D.A., D.F., B.T.C., T.H.J., M.P.R. and J.L. supervised the project; Z.H., B.T.C., M.P.R. and J.L. wrote the paper.

Corresponding authors

Correspondence to Michael P Rout or John LaCava.

Ethics declarations

Competing interests

A.A.O., A.R.O., M.P.R. and J.L. are inventors on a US patent application encompassing the filter work described in this article.

Integrated supplementary information

Supplementary Figure 1 Photographs of the powder-dispensing manifold and filter plate.

(a) Preparing to use the powder dispensing manifold; pre-cooling with liquid N2; (b) adjustable volume dispensing manifold, shown bottom up; (c) dispensing manifold with 96-well deep-well plate atop, cell material transfer is achieved upon inversion of this assembly; (d) a 96-well filtration device atop a 96-well, deep well collection plate.

Supplementary Figure 2 Nup1p-SpA 96-well screen.

Coomassie stained SDS-polyacrylamide gels of Nup1p-SpA screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 3 Comparison of SDS-PAGE and direct-to-MS analyses.

SDS-PAGE and LC-MS/MS clustering analysis of Nup1p-Spa 96-well purification. Numbers below each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 4 Correlation of SDS-PAGE and direct-to-MS analyses.

Frequency distribution of correlation coefficients between the gel dendrogram and 10 million permutations of the MS dendrogram.

Supplementary Figure 5 Arp2p-GFP 32-well screen.

Coomassie stained SDS-polyacrylamide gels of Arp2p-GFP screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1. Reference condition # 64.

Supplementary Figure 6 Csl4p-TAP 32-well screen.

Coomassie stained SDS-polyacrylamide gels of Csl4p-TAP screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1. Reference condition # 65.

Supplementary Figure 7 Snu71p-TAP 32-well screen.

Coomassie stained SDS-polyacrylamide gels of Snu71p-TAP screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1. Reference condition # 33.

Supplementary Figure 8 Rtn1p-GFP 32-well screen.

Coomassie stained SDS-polyacrylamide gels of Rtn1p-GFP screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 9 RpoC-SpA 24-well screen.

Coomassie stained SDS-polyacrylamide gel of RpoC-SpA screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 10 RRP6-3×Flag 24-well screen.

Coomassie stained SDS-polyacrylamide gel of RRP6-3xFLAG screen. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 11 RBM7-LAP two 24-well screens.

Coomassie stained SDS-polyacrylamide gels of RBM7-LAP screens. Numbers above each lane indicate the extractant formulation, presented in Supplementary Table 1.

Supplementary Figure 12 Dispensing manifold, basic engineering diagram.

The manifold is constructed of Black Delrin (acetal) that tolerates liquid nitrogen temperatures; additional engineering diagrams with more detailed specifications are available upon request.

Supplementary Figure 13 Bead-dispensing manifold.

For 96-well screens with yeast, extract homogenization is assisted by vortexing in the presence of 2 mm Ø steel balls. This manifold provides for parallel dispensing of precisely 2 balls to each well. When placed atop a 96-well plate, removal of the sliding bottom allows the balls to be deposited into the wells of the plate.

Supplementary Figure 14 Testing normality of I-DIRT ratio distribution.

Q-Q plot of the measured I-DIRT ratios (normalized to 100%) quantiles vs. theoretical quantiles.

Supplementary Figure 15 Fitted bimodal distribution of I-DIRT ratios of proteins copurifying with Rtn1p.

Orange and blue solid lines – fitted curves; dashed line – kernel density estimate of the total distribution; histogram – frequency distribution of I-DIRT ratios.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1, 3 and 5, Supplementary Notes 1 and 2, Supplementary Data and Supplementary Protocol 1 (PDF 10634 kb)

Supplementary Table 2

LC-MS/MS data of Nup1p-SpA affinity capture (XLSX 418 kb)

Supplementary Table 4

MS data for Rtn1p affinity capture experiments (XLSX 1169 kb)

Supplementary Protocol 2

Program files for Hamilton STAR liquid handling workstation (ZIP 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakhverdyan, Z., Domanski, M., Hough, L. et al. Rapid, optimized interactomic screening. Nat Methods 12, 553–560 (2015). https://doi.org/10.1038/nmeth.3395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing