Perspective | Published:

Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy

Nature Methods volume 9, pages 889895 (2012) | Download Citation

Abstract

We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of 0.8–0.9 across a field of view (FOV) of more than 20 mm2 or an NA of 0.1 across a FOV of 18 cm2, which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Immersion digital in-line holographic microscopy. Opt. Lett. 31, 1211–1213 (2006).This work introduces oil-immersion microscopy in lens-free holographic imaging.

  2. 2.

    et al. Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006).

  3. 3.

    , & Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34, 1162–1164 (2009).

  4. 4.

    , , & High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers. Opt. Lett. 36, 3651–3653 (2011).

  5. 5.

    et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010).

  6. 6.

    , , & Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 18, 11181–11191 (2010).

  7. 7.

    et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11, 1276–1279 (2011).This work, together with ref. 6, introduces the use of pixel super-resolution algorithms in lens-free on-chip microscopy for mitigating the pixel size limitation under unit magnification.

  8. 8.

    , & Holographic opto-fluidic microscopy. Opt. Express 18, 27499–27510 (2010).

  9. 9.

    , & Lensfree super-resolution holographic microscopy using wetting films on a chip. Opt. Express 19, 17378–17389 (2011).

  10. 10.

    , & Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. Lab Chip 12, 1242–1245 (2012).

  11. 11.

    et al. Lensfree holographic imaging of antibody microarrays for high-throughput detection of Leukocyte numbers and function. Anal. Chem. 82, 3736–3744 (2010).

  12. 12.

    , , & Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal. Chem. 82, 8307–8312 (2010).

  13. 13.

    , , & Optofluidic tomography on a chip. Appl. Phys. Lett. 98, 161109 (2011).

  14. 14.

    et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).This work introduces lens-free tomographic imaging on a chip.

  15. 15.

    , , , & Compressive holography. Opt. Express 17, 13040–13049 (2009).This work introduces compressive holographic imaging.

  16. 16.

    , , , & Video-rate compressive holographic microscopic tomography. Opt. Express 19, 7289–7298 (2011).

  17. 17.

    , & Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express 2, 2721–2730 (2011).

  18. 18.

    et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).This work introduces an optofluidic lens-free microscope that is based on sampling of flowing object shadows.

  19. 19.

    et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Lab Chip 10, 411–414 (2010).

  20. 20.

    , , , & The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. USA 108, 16889–16894 (2011).This work introduces contact-mode lens-free shadow imaging of static objects.

  21. 21.

    et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for Malaria diagnosis. PLoS ONE 6, e26127 (2011).

  22. 22.

    , , & Superresolution imaging via ptychography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 28, 604–612 (2011).

  23. 23.

    , & Optical ptychography: a practical implementation with useful resolution. Opt. Lett. 35, 2585–2587 (2010).

  24. 24.

    & Synthetic aperture single-exposure on-axis digital holography. Opt. Express 16, 161–169 (2008).

  25. 25.

    , , & Doppler phase-shifting digital holography and its application to surface shape measurement. Opt. Lett. 35, 1548–1550 (2010).

  26. 26.

    , , & Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects. Opt. Express 18, 10510–10523 (2010).

  27. 27.

    , , & Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field of view. PLoS One 6, e15955 (2011).This work, together with ref. 26, introduces the use of compressive decoding for lens-free fluorescence on-chip imaging.

  28. 28.

    , , & Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst 136, 3512–3518 (2011).

  29. 29.

    , , & Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope. Lab Chip 11, 3698–3702 (2011).

  30. 30.

    & Coherent lensless X-ray imaging. Nat. Photonics 4, 833–839 (2010).

  31. 31.

    Coherent methods in the X-ray sciences. Adv. Phys. 59, 1–99 (2010).

  32. 32.

    et al. Lensless imaging using broadband X-ray sources. Nat. Photonics 5, 420–424 (2011).

  33. 33.

    , , & Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

  34. 34.

    , & The oversampling phasing method. Acta Crystallogr. D. Biol. Crystallogr. 56, 1312–1315 (2000).

  35. 35.

    , , & Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input-output method. Phys. Rev. B 76, 064113 (2007).

  36. 36.

    , , , & Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2012).

  37. 37.

    et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11, 455–459 (2012).

  38. 38.

    Algorithmic Methods in Diffraction Microscopy (Cornell University, 2007).

  39. 39.

    , & Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 1662–1669 (1998).

  40. 40.

    Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7, 394–411 (1990).

  41. 41.

    & Phase retrieval from series of images obtained by defocus variation. Opt. Commun. 199, 65–75 (2001).

  42. 42.

    , & Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 043805 (2007).

  43. 43.

    , & Lensless digital holographic microscope with light-emitting diode illumination. Opt. Lett. 29, 1132–1134 (2004).

  44. 44.

    , & Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38, 7085–7094 (1999).

  45. 45.

    , & Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20, 21–36 (2003).

  46. 46.

    , , , & High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37, 247–260 (1998).

  47. 47.

    & A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10, 1187–1193 (2001).

  48. 48.

    Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

  49. 49.

    , , & Numerical suppression of the twin image in in-line holography of a volume of micro-objects. Meas. Sci. Technol. 19, 074004 (2008).

  50. 50.

    et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14, 7005–7013 (2006).

  51. 51.

    et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

  52. 52.

    , & Compressive Fresnel holography. J. Disp. Technol. 6, 506–509 (2010).

  53. 53.

    New lens offers scientist a brighter outlook. Science 335, 1562–1563 (2012).

  54. 54.

    et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12, 464–473 (2012).

  55. 55.

    , , & A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12, 369–375 (2012).

  56. 56.

    & Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002).

  57. 57.

    , & Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39, 4070–4075 (2000).

  58. 58.

    et al. Lensfree on-chip imaging using nanostructured surfaces. Appl. Phys. Lett. 96, 171106 (2010).

  59. 59.

    et al. Computational wave optics library for C++: CWO++. library. Comput. Phys. Commun. 183, 1124–1138 (2012).

  60. 60.

    , , & Big data, but are we ready? Nat. Rev. Genet. 12, 224 (2011).

  61. 61.

    et al. Distributed medical image analysis and diagnosis through crowd-sourced games: a malaria case study. PLoS One. 7, e37245 (2012).

Download references

Acknowledgements

A.O. gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers, Army Research Office Young Investigator Award, National Science Foundation CAREER Award, Office of Naval Research Young Investigator Award and National Institutes of Health Director′s New Innovator Award DP2OD006427 from the Office of the Director, National Institutes of Health.

Author information

Affiliations

  1. Electrical Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

    • Alon Greenbaum
    • , Wei Luo
    • , Ting-Wei Su
    • , Zoltán Göröcs
    • , Liang Xue
    • , Serhan O Isikman
    • , Ahmet F Coskun
    • , Onur Mudanyali
    •  & Aydogan Ozcan
  2. Department of Bioengineering, UCLA, Los Angeles, California, USA.

    • Alon Greenbaum
    • , Wei Luo
    • , Ting-Wei Su
    • , Zoltán Göröcs
    • , Liang Xue
    • , Serhan O Isikman
    • , Ahmet F Coskun
    • , Onur Mudanyali
    •  & Aydogan Ozcan
  3. Department of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.

    • Liang Xue
  4. California NanoSystems Institute, UCLA, Los Angeles, California, USA.

    • Aydogan Ozcan
  5. Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.

    • Aydogan Ozcan

Authors

  1. Search for Alon Greenbaum in:

  2. Search for Wei Luo in:

  3. Search for Ting-Wei Su in:

  4. Search for Zoltán Göröcs in:

  5. Search for Liang Xue in:

  6. Search for Serhan O Isikman in:

  7. Search for Ahmet F Coskun in:

  8. Search for Onur Mudanyali in:

  9. Search for Aydogan Ozcan in:

Competing interests

A.O. is the founder of a start-up company that aims to commercialize optical imaging–based diagnostics tools.

Corresponding author

Correspondence to Aydogan Ozcan.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmeth.2114

Further reading