Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Holographic photolysis of caged neurotransmitters


Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens-based and point-scanning illumination systems. Here we describe a microscope configuration that incorporates a nematic liquid-crystal spatial light modulator to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number, and in patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyze caged glutamate in brain slices, we show that shaped excitation on segments of neuronal dendrites and simultaneous, multispot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Optical setup and spot generation in a layer of coumarin.
Figure 2: Shaping of an excitation spot to match fine cellular processes.
Figure 3: Axial propagation of a holographic beam.
Figure 4: Varying the shape of illumination for photolysis influences the time course of glutamate clearance in cerebellar slices.
Figure 5: Using increasing lengths of shaped illumination to uncage glutamate along a dendrite preserves the time course of PECs in hippocampal slices.
Figure 6: Simultaneous uncaging of glutamate at two spots on granule-cell dendritic claws in acute cerebellar slices.


  1. 1

    Tang, C.M. Photolysis of caged neutrotransmitters; theory and procedures for light delivery. in Current Protocols in Neuroscience Unit 6.21 (John Wiley & Sons, Hoboken, NJ, 2006).

    Google Scholar 

  2. 2

    DiGregorio, D.A., Rothman, J.S., Nielsen, T.A. & Silver, R.A. Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J. Neurosci. 27, 8344–8357 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Shepherd, G.M. & Svoboda, K. Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J. Neurosci. 25, 5670–5679 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Gasparini, S. & Magee, J.C. State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 2088–2100 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Shoham, S., O'Connor, D.H., Sarkisov, D.V. & Wang, S.S. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Judkewitz, B., Roth, A. & Hausser, M. Dendritic enlightenment: using patterned two-photon uncaging to reveal the secrets of the brain's smallest dendrites. Neuron 50, 180–183 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Curtis, J.E., Koss, B.A. & Grier, D.G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Rodrigo, P.J., Daria, V.R. & Glückstad, J. Four-dimensional optical manipulation of colloidal particles. Appl. Phys. Lett. 86, 074103 (2005).

    Article  Google Scholar 

  11. 11

    Leach, J. et al. 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt. Express 12, 220–226 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Melville, H. et al. Optical trapping of three-dimensional structures using dynamic holograms. Opt. Express 11, 3562–3567 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Emiliani, V. et al. Wave front engineering for microscopy of living cells. Opt. Express 13, 1395–1405 (2005).

    Article  Google Scholar 

  14. 14

    Wulff, K.D. et al. Aberration correction in holographic optical tweezers. Opt. Express 14, 4169–4174 (2006).

    Article  Google Scholar 

  15. 15

    Cojoc, D., Di Fabrizio, E., Businaro, L. & Cabrini, S. Spherical-based approach to design diffractive optical elements. Proc. Soc. Photo. Opt. Instrum. Eng. 5227, 123–131 (2003).

    Google Scholar 

  16. 16

    Wyrowski, F. & Bryngdahl, O. Iterative Fourier-transform algorithm applied to computer holography. J. Opt. Soc. Am. A 5, 1058 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Goodman, J.W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    Google Scholar 

  18. 18

    Otis, T.S., Wu, Y.C. & Trussell, L.O. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J. Neurosci. 16, 1634–1644 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Carter, A.G. & Regehr, W.G. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J. Neurosci. 20, 4423–4434 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Tanaka, J. et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J. Neurosci. 25, 799–807 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Andrasfalvy, B.K. & Magee, J.C. Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J. Neurosci. 21, 9151–9159 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Silver, R.A., Cull-Candy, S.G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    CAS  Article  Google Scholar 

  24. 24

    DiGregorio, D.A., Nusser, Z. & Silver, R.A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A. & Cull-Candy, S.G. Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat. Neurosci. 8, 1310–1318 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Smith, T.C., Wang, L.Y. & Howe, J.R. Heterogeneous conductance levels of native AMPA receptors. J. Neurosci. 20, 2073–2085 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Schmitz, C.H.J., Spatz, J.P. & Curtis, J.E. High-precision steering of multiple holographic optical traps. Opt. Express 13, 8678–8685 (2005).

    Article  Google Scholar 

  28. 28

    Horneck, L.J. 128 × 128 Deformable Mirror Device. IEEE Trans. Electron. Dev. ED-30, 539–545 (1983).

    Article  Google Scholar 

  29. 29

    Reddy, G.D. & Saggau, P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005).

    Article  Google Scholar 

  30. 30

    Gobel, W., Kampa, B.M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4, 73–79 (2007).

    Article  Google Scholar 

  31. 31

    Morrison, J., Wan, P., Corrie, J.E. & Papageorgiou, G. Mechanisms of photorelease of carboxylic acids from 1-acyl-7-nitroindolines in solutions of varying water content. Photochem. Photobiol. Sci. 1, 960–969 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Gervasi, N. et al. Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. J. Neurosci. 27, 2744–2750 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  Google Scholar 

Download references


We thank D. Cojoc, E. Ferrari and E. di Fabrizio for collaborating in the development of the software; E. Papagiakoumou for helping to set up the double microscope system; D. Oron (Weizmann Institute of Science) for stimulating discussions and providing the coumarin samples; D. Ogden for stimulating discussions, comments on the manuscript and suggesting the use of 405-nm laser as a source; and A. Silver and A. Marty for critical reading of the manuscript. This work was supported by grants from the European Science Foundation and the Centre Nationale de la Recherche Scientifique through the European Young Investigators program (to V.E.), the European Commission FP6 Specific Targeted Project “Photolysis” LSHM-CT-2007-037765 (to V.E., S.C. and D.A.D.), Fondation Fyssen, the Actions Thématiques et Incitatives sur Programme Jeune Chercheurs, Federation pour la Recherche sur le Cerveau (to D.A.D.), Foundation Bettencourt-Schueller (to V.E. and S.C.), US National Institutes of Health grant NS49238 (to T.S.O.), the Network of European Science Institutes (to D.A.D. and V.E.) and the Alexander von Humboldt Foundation (to C.L.).

Author information




C.L. set up the holographic optical microscope and performed the theoretical simulation for axial beam propagation; C.L., T.S.O. and D.A.D. performed and analyzed the cerebellar brain slice experiments; C.L. and S.C. performed and analyzed the hippocampal brain slice experiments; T.S.O., S.C. and D.A.D. contributed to writing the manuscript. V.D. developed the software. V.E. conceived and supervised the project, and prepared the manuscript.

Corresponding author

Correspondence to Valentina Emiliani.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–3, Supplementary Methods (PDF 274 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lutz, C., Otis, T., DeSars, V. et al. Holographic photolysis of caged neurotransmitters. Nat Methods 5, 821–827 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing