Do-it-yourself guide: how to use the modern single-molecule toolkit

Abstract

Single-molecule microscopy has evolved into the ultimate-sensitivity toolkit to study systems from small molecules to living cells, with the prospect of revolutionizing the modern biosciences. Here we survey the current state of the art in single-molecule tools including fluorescence spectroscopy, tethered particle microscopy, optical and magnetic tweezers, and atomic force microscopy. We also provide guidelines for choosing the right approach from the available single-molecule toolkit for applications as diverse as structural biology, enzymology, nanotechnology and systems biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simplified schematics of single-molecule fluorescence microscopes.
Figure 2
Figure 3: Simplified schematics of single-molecule force microscopes.
Figure 4: Ultrahigh-resolution imaging with 'software'-based solutions.
Figure 5

References

  1. 1

    Feynman, R.P. in Miniaturization (ed., Gilbert, H. D.) 282–296 (Reinhold Publishing Corporation, New York, 1961). Feynman's now-famous deliberations on the “plenty of room at the bottom” inspired several generations of scientists to seek to fill this room with nanometer-scale materials and techniques to study them.

    Google Scholar 

  2. 2

    Binning, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    CAS  Google Scholar 

  3. 3

    Binning, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). A demonstration of the concept of atomic force microscopy by the combination of a scanning tunneling microscope and a stylus profilometer that is able to investigate surfaces of insulators on an atomic scale.

    Google Scholar 

  4. 4

    Pohl, D.W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution lambda/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Google Scholar 

  5. 5

    Moerner, W.E. & Kador, L. Optical-detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989). Optical absorption spectrum from a single molecule of pentacene in a p -terphenyl crystal at the temperature of liquid helium.

    CAS  PubMed  Google Scholar 

  6. 6

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990). Fluorescence detection of single pentacene molecules in a p -terphenyl crystal at low temperature.

    CAS  PubMed  Google Scholar 

  7. 7

    Moerner, W.E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002).

    CAS  Google Scholar 

  8. 8

    Orrit, M. Single-molecule spectroscopy: the road ahead. J. Chem. Phys. 117, 10938–10946 (2002).

    CAS  Google Scholar 

  9. 9

    Shera, E.B., Seitzinger, N.K., Davis, L.M., Keller, R.A. & Soper, S.A. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557 (1990). Single-molecule fluorescence detection in solution at room temperature.

    CAS  Google Scholar 

  10. 10

    Dickson, R.M., Norris, D.J., Tzeng, Y.L. & Moerner, W.E. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274, 966–969 (1996).

    CAS  PubMed  Google Scholar 

  11. 11

    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995). A refinement of epi-fluorescence and total internal reflection microscopies to achieve video-rate imaging of single molecules in aqueous solution.

    CAS  PubMed  Google Scholar 

  12. 12

    Greenleaf, W.J., Woodside, M.T. & Block, S.M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Ditzler, M.A., Aleman, E.A., Rueda, D. & Walter, N.G. Focus on function: single molecule RNA enzymology. Biopolymers 87, 302–316 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Moerner, W.E. New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. USA 104, 12596–12602 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Walter, N.G. et al. Under the microscope: single molecule symposium at the University of Michigan, 2006. Biopolymers 85, 106–114 (2007).

    PubMed  Google Scholar 

  16. 16

    Selvin, P.R. & Ha, T., eds. Single-Molecule Techniques: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2008).

    Google Scholar 

  17. 17

    Moffit, J.R., Chemla, Y.R., Smith, S.B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. (in the press) (2008).

  18. 18

    Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Harris, T.D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  21. 21

    Michalet, X. & Weiss, S. Single-molecule spectroscopy and microscopy. Compt. Rend. Phys. 3, 619–644 (2002).

    CAS  Google Scholar 

  22. 22

    Moerner, W.E. & Fromm, D.P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

    CAS  Google Scholar 

  23. 23

    Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006).

    Google Scholar 

  24. 24

    Yang, W., Gelles, J. & Musser, S.M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl. Acad. Sci. USA 101, 12887–12892 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Conchello, J.A. & Lichtman, J.W. Optical sectioning microscopy. Nat. Methods 2, 920–931 (2005).

    CAS  PubMed  Google Scholar 

  27. 27

    Kim, H.D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl. Acad. Sci. USA 99, 4284–4289 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol. 361, 1–33 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Korlach, J. et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. USA 105, 1176–1181 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Gorris, H.H., Blicharz, T.M. & Walt, D.R. Optical-fiber bundles. FEBS J. 274, 5462–5470 (2007).

    CAS  PubMed  Google Scholar 

  32. 32

    Mannion, J.T. & Craighead, H.G. Nanofluidic structures for single biomolecule fluorescent detection. Biopolymers 85, 131–143 (2007).

    CAS  PubMed  Google Scholar 

  33. 33

    Brewer, L. R. & Bianco, P. R. Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat. Methods 5, 517–525 (2008).

    CAS  PubMed  Google Scholar 

  34. 34

    Eggeling, C., Fries, J.R., Brand, L., Gunther, R. & Seidel, C.A. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 95, 1556–1561 (1998).

    CAS  PubMed  Google Scholar 

  35. 35

    Lee, T.H. et al. Measuring the folding transition time of single RNA molecules. Biophys. J. 92, 3275–3283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003). Single fluorophore tracking refined to nanometer resolution in dynamic biological samples.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Toprak, E. & Selvin, P.R. New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annu. Rev. Biophys. Biomol. Struct. 36, 349–369 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Park, H., Toprak, E. & Selvin, P.R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007).

    CAS  PubMed  Google Scholar 

  40. 40

    Walter, N.G. Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25, 19–30 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Kapanidis, A.N. & Weiss, S. Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10953–10964 (2002).

    CAS  Google Scholar 

  42. 42

    Rasnik, I., Mckinney, S.A. & Ha, T. Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Yin, J. et al. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling. Chem. Biol. 12, 999–1006 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Haustein, E. & Schwille, P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Van Orden, A. & Jung, J. Fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation. Biopolymers 89, 1–16 (2008).

    CAS  Google Scholar 

  46. 46

    Michalet, X. & Weiss, S. Using photon statistics to boost microscopy resolution. Proc. Natl. Acad. Sci. USA 103, 4797–4798 (2006).

    CAS  PubMed  Google Scholar 

  47. 47

    Geerts, H. et al. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52, 775–782 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gelles, J., Schnapp, B.J. & Sheetz, M.P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988). Tracking of nanometer-scale motion in dynamic biological systems by attaching microscopic beads.

    CAS  PubMed  Google Scholar 

  49. 49

    Schafer, D.A., Gelles, J., Sheetz, M.P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light-microscopy. Nature 352, 444–448 (1991).

    CAS  PubMed  Google Scholar 

  50. 50

    Schmidt, T., Schutz, G.J., Baumgartner, W., Gruber, H.J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Ram, S., Ward, E.S. & Ober, R.J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Churchman, L.S., Okten, Z., Rock, R.S., Dawson, J.F. & Spudich, J.A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102, 1419–1423 (2005).

    CAS  PubMed  Google Scholar 

  53. 53

    Gordon, M.P., Ha, T. & Selvin, P.R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101, 6462–6465 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Qu, X.H., Wu, D., Mets, L. & Scherer, N.F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101, 11298–11303 (2004).

    CAS  PubMed  Google Scholar 

  55. 55

    Rust, M.J., Bates, M. & Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). Imaging of intracellular proteins at nanometer spatial resolution by stochastic photoswitching.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Sharonov, A. & Hochstrasser, R.M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970). Optical tweezers implemented as a noninvasive manipulation technique.

    CAS  Google Scholar 

  60. 60

    Lambert, M.N. et al. Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys. J. 90, 3672–3685 (2006).

    CAS  Google Scholar 

  61. 61

    Schafer, D.A., Gelles, J., Sheetz, M.P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448 (1991).

    CAS  PubMed  Google Scholar 

  62. 62

    Dohoney, K.M. & Gelles, J. Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001).

    CAS  PubMed  Google Scholar 

  63. 63

    van Oijen, A.M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    CAS  Google Scholar 

  64. 64

    La Porta, A. & Wang, M.D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Deufel, C., Forth, S., Simmons, C.R., Dejgosha, S. & Wang, M.D. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods 4, 223–225 (2007).

    CAS  PubMed  Google Scholar 

  66. 66

    Yang, Y., Wang, H. & Erie, D.A. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods 29, 175–187 (2003).

    CAS  PubMed  Google Scholar 

  67. 67

    Weber, P.C., Ohlendorf, D.H., Wendoloski, J.J. & Salemme, F.R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    CAS  PubMed  Google Scholar 

  68. 68

    Fan, F.R. & Bard, A.J. Electrochemical detection of single molecules. Science 267, 871–874 (1995).

    CAS  PubMed  Google Scholar 

  69. 69

    Hla, S.W. & Rieder, K.H. STM control of chemical reaction: single-molecule synthesis. Annu. Rev. Phys. Chem. 54, 307–330 (2003).

    CAS  PubMed  Google Scholar 

  70. 70

    Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005). The authors show that Ångstrom resolution can be obtained using ultrasensitive optical tweezers to observe single steps of RNA polymerase along a double-stranded DNA template.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Charvin, G., Strick, T.R., Bensimon, D. & Croquette, V. Tracking topoisomerase activity at the single-molecule level. Annu. Rev. Biophys. Biomol. Struct. 34, 201–219 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Kedrov, A., Janovjak, H., Sapra, K.T. & Muller, D.J. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Michalet, X. et al. The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 32, 161–182 (2003).

    CAS  PubMed  Google Scholar 

  75. 75

    Tinnefeld, P. & Sauer, M. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew. Chem. Int. Edn. Engl. 44, 2642–2671 (2005).

    CAS  Google Scholar 

  76. 76

    Thompson, N.L., Lieto, A.M. & Allen, N.W. Recent advances in fluorescence correlation spectroscopy. Curr. Opin. Struct. Biol. 12, 634–641 (2002).

    PubMed  Google Scholar 

  77. 77

    Elson, E.L. Quick tour of fluorescence correlation spectroscopy from its inception. J. Biomed. Opt. 9, 857–864 (2004).

    CAS  PubMed  Google Scholar 

  78. 78

    Leake, M.C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J. 26, 527–537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Armani, A.M., Kulkarni, R.P., Fraser, S.E., Flagan, R.C. & Vahala, K.J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    CAS  Google Scholar 

  81. 81

    Huang, B. et al. Counting low-copy number proteins in a single cell. Science 315, 81–84 (2007).

    CAS  PubMed  Google Scholar 

  82. 82

    Zhuang, X. Single-molecule RNA science. Annu. Rev. Biophys. Biomol. Struct. 34, 399–414 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Cosa, G. et al. Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein. Biophys. J. 87, 2759–2767 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Wang, D. & Geva, E. Protein structure and dynamics from single-molecule fluorescence resonance energy transfer. J. Phys. Chem. B 109, 1626–1634 (2005).

    CAS  PubMed  Google Scholar 

  85. 85

    Yang, H. et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

    CAS  PubMed  Google Scholar 

  86. 86

    Reinhard, B.M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A.P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).

    CAS  PubMed  Google Scholar 

  87. 87

    Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Zhuang, X.W. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002). A detailed study of the hairpin ribozyme reveals profound molecular heterogeneities in single biomolecules that is largely lost in the ensemble average.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Rueda, D. et al. Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc. Natl. Acad. Sci. USA 101, 10066–10071 (2004).

    CAS  PubMed  Google Scholar 

  90. 90

    Nahas, M.K. et al. Observation of internal cleavage and ligation reactions of a ribozyme. Nat. Struct. Mol. Biol. 11, 1107–1113 (2004).

    CAS  Google Scholar 

  91. 91

    Liu, S., Bokinsky, G., Walter, N.G. & Zhuang, X. Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic “fingerprinting”. Proc. Natl. Acad. Sci. USA 104, 12634–12639 (2007).

    CAS  PubMed  Google Scholar 

  92. 92

    Kapanidis, A.N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Myong, S., Rasnik, I., Joo, C., Lohman, T.M. & Ha, T. Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005).

    CAS  PubMed  Google Scholar 

  94. 94

    Lu, H.P., Xun, L. & Xie, X.S. Single molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    CAS  PubMed  Google Scholar 

  95. 95

    Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    CAS  Google Scholar 

  96. 96

    English, B.P. et al. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2, 87–94 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Luo, G., Wang, M., Konigsberg, W.H. & Xie, X.S. Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 104, 12610–12615 (2007).

    CAS  Google Scholar 

  98. 98

    Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    PubMed  Google Scholar 

  99. 99

    Rotman, B. Measurement of activity of single molecules of beta-D-galactosidase. Proc. Natl. Acad. Sci. USA 47, 1981–1991 (1961).

    CAS  PubMed  Google Scholar 

  100. 100

    Xue, Q.F. & Yeung, E.S. Differences in the chemical-reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    CAS  PubMed  Google Scholar 

  101. 101

    Laurence, T.A., Kong, X., Jager, M. & Weiss, S. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl. Acad. Sci. USA 102, 17348–17353 (2005).

    CAS  PubMed  Google Scholar 

  102. 102

    Lee, N.K., Koh, H.R., Han, K.Y. & Kim, S.K. Folding of 8–17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules. J. Am. Chem. Soc. 129, 15526–15534 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Liu, R., Hu, D., Tan, X. & Lu, H.P. Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc. 128, 10034–10042 (2006).

    CAS  PubMed  Google Scholar 

  104. 104

    Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Dorywalska, M. et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Bacia, K., Kim, S.A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 83–89 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. USA 101, 7317–7322 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Elf, J., Li, G.W. & Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Xie, X.S., Yu, J. & Yang, W.Y. Living cells as test tubes. Science 312, 228–230 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Rueda, D. & Walter, N.G. Single molecule fluorescence control for nanotechnology. J. Nanosci. Nanotechnol. 5, 1990–2000 (2005).

    CAS  PubMed  Google Scholar 

  111. 111

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Geisler, C. et al. Resolution of lambda/10 in fluorescence microscopy using fast single molecule photo-switching. Appl. Phys. A 88, 223–226 (2007).

    CAS  Google Scholar 

  113. 113

    Bock, H. et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88, 161–165 (2007).

    CAS  Google Scholar 

  114. 114

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    CAS  Google Scholar 

  116. 116

    Donnert, G. et al. Two-color far-field fluorescence nanoscopy. Biophys. J. 92, L67–L69 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Willig, K.I., Harke, B., Medda, R. & Hell, S.W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).

    CAS  PubMed  Google Scholar 

  118. 118

    Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 10, 674–676 (2003).

    Google Scholar 

  120. 120

    Block, S.M., Goldstein, L.S. & Schnapp, B.J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kuo, S.C. & Sheetz, M.P. Force of single kinesin molecules measured with optical tweezers. Science 260, 232–234 (1993).

    CAS  PubMed  Google Scholar 

  122. 122

    Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K., Jr. Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

    CAS  PubMed  Google Scholar 

  123. 123

    Smith, D.E. et al. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005).

    CAS  PubMed  Google Scholar 

  125. 125

    Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998). Combination of single-molecule fluorescence microscopy with optical tweezers.

    CAS  PubMed  Google Scholar 

  126. 126

    Lang, M.J., Fordyce, P.M., Engh, A.M., Neuman, K.C. & Block, S.M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Brau, R.R., Tarsa, P.B., Ferrer, J.M., Lee, P. & Lang, M.J. Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys. J. 91, 1069–1077 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318, 279–283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Noom, M.C., van den Broek, B., van Mameren, J. & Wuite, G.J. Visualizing single DNA-bound proteins using DNA as a scanning probe. Nat. Methods 4, 1031–1036 (2007).

    CAS  PubMed  Google Scholar 

  130. 130

    Grier, D.G. & Roichman, Y. Holographic optical trapping. Appl. Opt. 45, 880–887 (2006).

    PubMed  Google Scholar 

  131. 131

    Kask, P., Palo, K., Ullmann, D. & Gall, K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 96, 13756–13761 (1999).

    CAS  PubMed  Google Scholar 

  132. 132

    Cox, I.J., Sheppard, C.J.R. & Wilson, T. Super-resolution by confocal fluorescent microscopy. Optik 60, 391–396 (1982).

    Google Scholar 

  133. 133

    Edidin, M. Near-field scanning optical microscopy, a siren call to biology. Traffic 2, 797–803 (2001).

    CAS  PubMed  Google Scholar 

  134. 134

    Chen, Y., Muller, J.D., So, P.T.C. & Gratton, E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy - a concept for optical resolution improvement. J. Opt. Soc. Am. 19, 1599–1609 (2002).

    Google Scholar 

  136. 136

    Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). The authors present the concept of stimulated emission depletion fluorescence microscopy to break Abbe's diffraction limit.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Crut, A., Koster, D.A., Seidel, R., Wiggins, C.H. & Dekker, N.H. Fast dynamics of supercoiled DNA revealed by single-molecule experiments. Proc. Natl. Acad. Sci. USA 104, 11957–11962 (2007).

    CAS  PubMed  Google Scholar 

  139. 139

    Owen, R.J., Heyes, C.D., Knebel, D., Rocker, C. & Nienhaus, G.U. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy. Biopolymers 82, 410–414 (2006).

    CAS  PubMed  Google Scholar 

  140. 140

    Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants GM062357, GM081025 and GM037006, and US National Science Foundation Chemical Bonding Center award 0533019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nils G Walter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walter, N., Huang, CY., Manzo, A. et al. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5, 475–489 (2008). https://doi.org/10.1038/nmeth.1215

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing