Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chiral selection on inorganic crystalline surfaces

Abstract

From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces — periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces — research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quartz crystal (1mm diameter) displaying selective deposition of iron oxide coatings on {101̄1} rhombohedral faces, compared with adjacent {011̄1} rhombohedral faces.
Figure 2: The mineral quartz, SiO2, occurs in both left- and right-handed variants, depending on the orientation of structural helices.
Figure 3: Calcite, CaCO3, displays stepped-growth features on (101̄4) cleavage surfaces when placed in a supersaturated aqueous calcium carbonate solution.
Figure 4: The common {213̄1} trigonal scalenohedral ('dogtooth') form of calcite features adjacent crystal faces with enantiomorphic surface structures (after Dana28).
Figure 5: A top view of an ideal face-centred-cubic (f.c.c.) (643) surface, with step-edges highlighted with solid lines (after Sholl et al.32).
Figure 6: Scanning tunnelling microscope (STM) image of a 24.3 × 24.3 nm region of a Cu(5,8,90) surface reproduced from Dieluweit et al.101.
Figure 7: The structure of a chiral Pt surface after annealing an initially ideal surface at 500 K for 1 hour using the DFT/lattice model described in the text (after Sholl et al.32).

Similar content being viewed by others

References

  1. Brown, G.E. Jr. et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77–174 ( 1998).

    Article  Google Scholar 

  2. Popa, R. A sequential scenario for the origin of biological chirality. J. Mol. Evol. 44, 121–127 ( 1997).

    Article  CAS  Google Scholar 

  3. Lahav, N. Biogenesis: Theories of Life's Origins (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  4. Pályi, G., Zucchi, C. & Caglioti, L. (eds.) Advances in Biochirality (Elsevier, New York, 1999).

    Google Scholar 

  5. Jacoby, M. 2-D steroeselectivity. Chem. Eng. News 43–46 ( March 25, 2002).

  6. Weissbuch, I. et al. Separation of enantiomers and racemate formation in two-dimensional crystals at the water surface from racemic alpha-amino acid amphiphiles: design and structure. J. Am. Chem. Soc. 119, 933–942 ( 1997).

    Article  CAS  Google Scholar 

  7. Lahav, M. & Leiserowitz, L. Spontaneous resolution: From three-dimensional crystals to two-dimensional magic nanoclusters. Angew. Chem. Int. Edn Engl. 38, 2533–2535 ( 1999).

    Article  CAS  Google Scholar 

  8. Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Molecular recognition at crystal interfaces. Science 253, 637–644 ( 1991).

    Article  CAS  Google Scholar 

  9. Koretsky, C.M., Sverjensky, D.A. & Sahai, N. A model of surface site types on oxide and silicate minerals based on crystal chemistry: Implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Am. J. Sci. 298, 349–438 ( 1998).

    Article  CAS  Google Scholar 

  10. Stipp, S.L. & Hochella, M.F. Jr. Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochim. Cosmochim. Acta 55, 1723–1736 ( 1991).

    Article  CAS  Google Scholar 

  11. Van Cappellen, P., Charlet, L., Stumm, W. & Wersin, P. A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim. Cosmochim. Acta 57, 3505–3518 ( 1993).

    Article  CAS  Google Scholar 

  12. de Leeuw, N.H., Parker, S.C. & Harding, J.H. Molecular dynamics simulation of crystal dissolution from calcite steps. Phys. Rev. B 60, 13792–13799 ( 1999).

    Article  CAS  Google Scholar 

  13. Davankov, V.A. The nature of chiral recognition: Is it a three-point interaction? Chirality 9, 99–102 ( 1997).

    Article  CAS  Google Scholar 

  14. Lopinski, G.P., Moffatt, D.J., Wayner, D.D.M. & Wolkow, R.A. Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature 392, 909–911 ( 1998).

    Article  CAS  Google Scholar 

  15. Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme cristalline et la composition chimique, et le sens de la polarisation rotatoire. Ann. Chim. Phys. 24 (3rd series), 442–459 ( 1848).

    Google Scholar 

  16. Pasteur, L. Nouvelles recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le phénomène de la polarisation rotatoire. Ann. Chim. Phys. 31 (3rd series), 67–102 ( 1851).

    Google Scholar 

  17. Stinson, S.C. Chiral chemistry. Chem. Eng. News 79, 45–56 ( 2001).

    Article  Google Scholar 

  18. Rouhi, A.M. Chiral roundup. Chem. Eng. News 80, 43–57 ( 2002).

    Article  Google Scholar 

  19. Halasyamani, P.S. & Poeppelmeier, K.R. Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 ( 1998).

    Article  CAS  Google Scholar 

  20. Tsuchida, R., Kobayashi, M. & Nakamura, A. Asymmetric adsorption of complex salts on quartz. J. Chem. Soc. Jpn 56, 1339 ( 1935).

    CAS  Google Scholar 

  21. Karagounis, G. & Coumonlos, G. A new method for resolving a racemic compound. Nature 142, 162–163 ( 1938).

    Article  Google Scholar 

  22. Bonner, W.A., Kavasmaneck, P.R., Martin, F.S. & Flores, J.J. Asymmetric adsorption of alanine by quartz. Science 186, 143–144 ( 1974).

    Article  CAS  Google Scholar 

  23. Bonner, W.A., Kavasmaneck, P.R., Martin, F.S. & Flores, J.J. Asymmetric adsorption by quartz: A model for the prebiotic origin of optical activity. Origin of Life 6, 367–376 ( 1975).

    Article  CAS  Google Scholar 

  24. Soai, K. et al. d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc. 121, 11235–11236 ( 1999).

    Article  CAS  Google Scholar 

  25. Guevremont, J.M., Strongin, D.R. & Schoonin, M.A.A. Thermal chemistry of H2S and H2O on the (100) plane of pyrite: Unique reactivity of defect sites. Am. Mineral. 83, 1246–1255 ( 1998).

    Article  CAS  Google Scholar 

  26. McFadden, C.F., Cremer, P.S. & Gellman, A.J. Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12, 2483–2487 ( 1996).

    Article  CAS  Google Scholar 

  27. Hazen, R.M., Filley, T.R. & Goodfriend, G.A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl Acad. Sci. USA 98, 5487–5490 ( 2001).

    Article  CAS  Google Scholar 

  28. Dana, E.S. A Textbook of Mineralogy (Wiley, New York, 1949).

    Google Scholar 

  29. Smyth, J.R. & Bish, D.L. Crystal Structures and Cation Sites of the Rock-Forming Minerals (Allen & Unwin, Boston, 1988).

    Google Scholar 

  30. Sholl, D.S. Adsorption of chiral hydrocarbons on chiral platinum surfaces. Langmuir 14, 862–867 ( 1998).

    Article  CAS  Google Scholar 

  31. Power, T.D. & Sholl, D.S. Enantiospecific adsorption of chiral hydrocarbons on naturally chiral Pt and Cu surfaces. J. Vac. Sci. Technol. A 17, 1700–1704 ( 1999).

    Article  CAS  Google Scholar 

  32. Sholl, D.S., Asthagiri, A. & Power, T.D. Naturally chiral metal surfaces as enantiospecific adsorbents. J. Phys. Chem. B 105, 4771–4782 ( 2001).

    Article  CAS  Google Scholar 

  33. Gellman, A.J., Horvath, J.D. & Buelow, M.T. Chiral single crystal surface chemistry. J. Mol. Catal. A 167, 3–11 ( 2001).

    Article  CAS  Google Scholar 

  34. Horvath, J.D. & Gellman, A.J. Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J. Am. Chem. Soc. 123, 7953–7954 ( 2001).

    Article  CAS  Google Scholar 

  35. Horvath, J.D. & Gellman, A.J. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J. Am. Chem. Soc. 124, 2384–2392 ( 2002).

    Article  CAS  Google Scholar 

  36. Ahmadi, A., Attard, G., Feliu, J. & Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir 15, 2420–2424 ( 1999).

    Article  CAS  Google Scholar 

  37. Attard, G.A. et al. Temperature effects in the enantiomeric electro-oxidation of D- and L-glucose on Pt{643}(S). J. Phys. Chem. B 103, 1381–1385 ( 1999).

    Article  CAS  Google Scholar 

  38. Attard, G.A. Electrochemical studies of enantioselectivity at chiral metal surfaces. J. Phys. Chem. B 105, 3158–3167 ( 2001).

    Article  CAS  Google Scholar 

  39. Attard, G.A., Harris, C., Herrero, E. & Feliu, J. The influence of anions and kink structure on the enantioselective electro-oxidation of glucose. Faraday Discuss. 121, 253–266 ( 2002).

    Article  CAS  Google Scholar 

  40. Baiker, A. Progress in asymmetric heterogeneous catalysis: Design of novel chirally modified platinum metal catalysts. J. Mol. Catal. A 115, 473–493 ( 1997).

    Article  CAS  Google Scholar 

  41. Blaser, H.U. Enantioselective synthesis using chiral heterogeneous catalysts. Tetrahedron-Asymmetry 2, 843–866 ( 1991).

    Article  CAS  Google Scholar 

  42. Blaser, H.U. Heterogeneous catalysis for fine chemicals production. Catal. Today 60, 161–165 ( 2000).

    Article  CAS  Google Scholar 

  43. Ferri, D., Burgi, T. & Baiker, A. Chiral modification of platinum catalysts by cinchonidine adsorption studied by in situ ATR-IR spectroscopy. Chem. Commun. 1172–1173 ( 2001).

  44. Bonello, J.M. et al. Fundamental aspects of enantioselective heterogeneous catalysis: a NEXAFS study of methyl pyruvate and (S)-(-)-1-(1- naphthyl) ethylamine on Pt{111}. Surf. Sci. 482, 207–214 ( 2001).

    Article  Google Scholar 

  45. Bonello, J.M. & Lambert, R.M. The structure and reactivity of quinoline overlayers and the adsorption geometry of lepidine on Pt{111}: model molecules for chiral modifiers in enantioselective hydrogenation. Surf. Sci. 498, 212–228 ( 2002).

    Article  CAS  Google Scholar 

  46. Lorenzo, M.O., Baddeley, C.J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 ( 2000).

    Article  CAS  Google Scholar 

  47. Zhao, X.Y., Zhao, R.G. & Yang, W.S. Scanning tunneling microscopy investigation of L-lysine adsorbed on Cu(001). Langmuir 16, 9812–9818 ( 2000).

    Article  CAS  Google Scholar 

  48. Barbosa, L.A.M.M. & Sautet, P. Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: A periodic density functional theory study. J. Am. Chem. Soc. 123, 6639–6648 ( 2001).

    Article  CAS  Google Scholar 

  49. Chen, Q., Lee, C.W., Frankel, D.J. & Richardson, N.V. The formation of enantiospecific phases on a Cu(110) surface. Phys. Chem. Commun. [online] 9, ( 1999) (doi:10.1039/a905986e).

  50. Chen, Q., Frankel, D.J. & Richardson, N.V. Chemisorption induced chirality: glycine on Cu{110}. Surf. Sci. 497, 37–46 ( 2002).

    Article  CAS  Google Scholar 

  51. Amariglio, A., Amariglio, H. & Duval, X. Asymmetric reactions on optically active quartz. Helv. Chim. Acta 51, 2110–2115 ( 1968).

    Article  CAS  Google Scholar 

  52. Cody, A.M. & Cody, R.D. Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors. J. Cryst. Growth 113, 508–529 ( 1991).

    Article  CAS  Google Scholar 

  53. Babel, M. Crystallography and genesis of the giant intergrowths of gypsum from the Miocene evaporites of Poland. Archiwum Mineralogiczne 44, 103–135 ( 1990).

    CAS  Google Scholar 

  54. Orme, C.A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 ( 2001).

    Article  CAS  Google Scholar 

  55. Bally, A.W. & Palmer, A.R. (eds.) The Geology of North America: An Overview (Geological Society of America, Boulder, Colorado, 1989).

    Book  Google Scholar 

  56. Sumner, D.Y. Carbonate precipitation and oxygen stratification in late Archaean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco Formations, Transvaal Supergroup, South Africa. Am. J. Sci. 297, 455–487 ( 1997).

    Article  CAS  Google Scholar 

  57. Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702 ( 1997).

    Article  CAS  Google Scholar 

  58. Carter, P.W. & Mitterer, R.M. Amino acid composition of organic matter associated with carbonate and non-carbonate sediments. Geochim. Cosmochim. Acta 42, 1231–1238 ( 1978).

    Article  CAS  Google Scholar 

  59. Lowenstam, H.A. & Weiner, S. On Biomineralization (Oxford University Press, New York, 1989).

    Google Scholar 

  60. Alzenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system of brittlestars. Nature 412, 819–822 ( 2001).

    Article  CAS  Google Scholar 

  61. Horvath, J.D. Enantiospecific Adsorption on Naturally Chiral Copper Surfaces. Thesis, Carnegie-Mellon Univ. ( 2003).

    Google Scholar 

  62. Stinnett, J.A. & Madix, R.J. Molecular adsorption of alkanes on platinum surfaces: A predictive theoretical model. J. Chem. Phys. 105, 1609–1620 ( 1996).

    Article  CAS  Google Scholar 

  63. Weaver, J.F. & Madix, R.J. Trapping dynamics of isobutane, n-butane, and neopentane on Pt(111): Effects of molecular weight and structure. J. Chem. Phys. 110, 10585–10598 ( 1999).

    Article  CAS  Google Scholar 

  64. Power, T.D. & Sholl, D.S. Effects of surface relaxation on enantiospecific adsorption on naturally chiral Pt surfaces. Top. Catal. 18, 201–208 ( 2002).

    Article  CAS  Google Scholar 

  65. Power, T.D., Asthagiri, A. & Sholl, D.S. Atomically detailed models of the effect of thermal roughening on the enantiospecificity of naturally chiral platinum surfaces. Langmuir 18, 3737–3748 ( 2002).

    Article  CAS  Google Scholar 

  66. Lipkowitz, K.B., Coner, R., Peterson, M.A., Morreale, A. & Shackelford, J. The principle of maximum chiral discrimination: Chiral recognition in permethyl-beta-cyclodextrin. J. Org. Chem. 63, 732–745 ( 1998).

    Article  CAS  Google Scholar 

  67. Jeong, H.C. & Williams, E.D. Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34, 175–294 ( 1999).

    Article  Google Scholar 

  68. Williams, E.D. & Bartelt, N.C. Thermodynamics of surface morphology. Science 251, 393–400 ( 1991).

    Article  CAS  Google Scholar 

  69. Asthagiri, A., Feibelman, P.J. & Sholl, D.S. Thermal fluctuations in the structure of naturally chiral Pt surfaces. Top. Catal. 18, 193–200 ( 2002).

    Article  CAS  Google Scholar 

  70. Lorensen, H.T., Nørskov, J.K. & Jacobsen, K.W. Mechanisms of self-diffusion on Pt(110). Phys. Rev. B 60, R5149–R5152 ( 1999).

    Article  Google Scholar 

  71. Stolbov, S. & Rahman, T.S. Role of long range interaction in oxygen superstructure formation on Cu(001) and Ni(001). Phys. Rev. Lett. 89, 116101 ( 2002).

    Article  CAS  Google Scholar 

  72. Zhao, X.Y. Fabricating homochiral facets on Cu(001) with L-lysine. J. Am. Chem. Soc. 122, 12584–12585 ( 2000).

    Article  CAS  Google Scholar 

  73. Schunack, M., Laegsgaard, E., Stensgaard, I., Johannsen, I. & Besenbacher, F. A chiral metal surface. Angew. Chem. Int. Edn Engl. 40, 2623–2626 ( 2001).

    Article  CAS  Google Scholar 

  74. Mason, S.F. Extraterrestrial handedness revisited. Origins Life Evol. Biosph. 30, 435–437 ( 2000).

    Article  CAS  Google Scholar 

  75. Bonner, W.A. The origin and amplification of biomolecular chirality. Origins Life Evol. Biosph. 21, 59–111 ( 1991).

    Article  CAS  Google Scholar 

  76. Bonner, W.A. Terrestrial and extraterrestrial sources of molecular homochirality. Origins Life Evol. Biosph. 21, 407–420 ( 1992).

    Article  Google Scholar 

  77. Bonner, W.A. Chirality and life. Origins Life Evol. Biosph. 25, 175–190 ( 1995).

    Article  CAS  Google Scholar 

  78. Clark, S. Polarized starlight and the handedness of life. Am. Sci. 87, 336–343 ( 1999).

    Article  Google Scholar 

  79. Podlech, J. New insight into the source of biomolecular homochirality: An extraterrestrial origin for molecules of life. Angew. Chem. Int. Edn Engl. 38, 477–478 ( 1999).

    Article  CAS  Google Scholar 

  80. Bailey, J. et al. Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science 281, 672–674 ( 1998).

    Article  Google Scholar 

  81. Rikken, G.L.J.A. & Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 ( 2000).

    Article  CAS  Google Scholar 

  82. Salam, A. The role of chirality in the origin of life. J. Mol. Evol. 33, 105–113 ( 1991).

    Article  CAS  Google Scholar 

  83. Engel, M.H. & Macko, S.A. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389, 265–268 ( 1997).

    Article  CAS  Google Scholar 

  84. Cronin, J.R. & Pizzarello, S. Enantiomeric excesses in meteoric amino acids. Science 275, 951–955 ( 1997).

    Article  CAS  Google Scholar 

  85. Pizzarello, S. & Cronin, J.R. Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta 64, 329–338 ( 2000).

    Article  CAS  Google Scholar 

  86. Avetisov, V.A., Goldanskii, V.I. & Kuz'min, V.V. Handedness, origin of life and evolution. Phys. Today 44, 33–41 ( 1991).

    Article  CAS  Google Scholar 

  87. Avetisov, V.A. in Advances in Biochirality (eds Pályi, G., Zucchi, C. & Caglioti, L.) 69–84 (Elsevier, New York, 1999).

    Book  Google Scholar 

  88. Cintas, P. Chirality of living systems: a helping hand from crystals and oligopeptides. Angew. Chem. Int. Edn Engl. 41, 1139–1145 ( 2002).

    Article  CAS  Google Scholar 

  89. Chela-Flores, J. The origin of chirality in protein amino acids. Chirality 6, 165–168 ( 1994).

    Article  CAS  Google Scholar 

  90. Bolli, M., Micura, R. & Eschenmoser, A. Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2',3'-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem. Biol. 4, 309–320 ( 1997).

    Article  CAS  Google Scholar 

  91. Lippmann, D.Z. & Dix, J. in Advances in Biochirality (eds Pályi, G., Zucchi, C. & Caglioti, L.) 85–98 (Elsevier, New York, 1999).

    Book  Google Scholar 

  92. Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M.R. A chiroselective peptide replicator. Nature 409, 797–801 ( 2001).

    Article  CAS  Google Scholar 

  93. Eckert, C.J. et al. Synthesis of chiral phases in monolayer crystals of racemic amphiphiles. Nature 362, 614–616 ( 1993).

    Article  Google Scholar 

  94. Frondel, C. Characters of quartz fibers. Am. Mineral. 63, 17–27 ( 1978).

    CAS  Google Scholar 

  95. Evgenii, K. & Wolfram, T. The role of quartz in the origin of optical activity on Earth. Origins Life Evol. Biosph. 30, 431–434 ( 2000).

    Article  CAS  Google Scholar 

  96. Sljivancanin, Z., Gothelf, K.V. & Hammer, B. Density functional theory of enantioselective adsorption at chiral surfaces. J. Am. Chem. Soc. 124, 14789–14794 ( 2002).

    Article  CAS  Google Scholar 

  97. Brown, G.E. How minerals react with water. Science 294, 67–69 ( 2001).

    Article  CAS  Google Scholar 

  98. Wang, X.-G., Chaka, A. & Scheffler, M. Effect of environment on α-Al2O3 (0001) surface structures. Phys. Rev. Lett. 84, 3650–3653 ( 2000).

    Article  CAS  Google Scholar 

  99. Giordano, L., Goniakowski, J. & Suzanne, J. Partial dissociation of water molecules in the (3x2) water monolayer deposited on the MgO (100) surface. Phys. Rev. Letter 81, 1271–1273 ( 1998).

    Article  CAS  Google Scholar 

  100. Hass, K.C., Schneider, W.F., Curioni, A. & Andreoni, W. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 282, 265–268 ( 1998).

    Article  CAS  Google Scholar 

  101. Dieluweit, S., Ibach, H., Giesen, M. & Einstein, T.L. Orientation dependence of step stiffness: Failure of SOS and Ising models to describe experimental data. Phys. Rev. Lett. 121410(R) ( 2003).

Download references

Acknowledgements

R.M.H. has been supported by the NASA Astrobiology Institute and the Carnegie Institution of Washington. D.S.S. has been supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hazen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazen, R., Sholl, D. Chiral selection on inorganic crystalline surfaces. Nature Mater 2, 367–374 (2003). https://doi.org/10.1038/nmat879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing