Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral metal surfaces for enantioselective processes

Abstract

Chiral surfaces are critical components of enantioselective heterogeneous processes such as those used to prepare enantiomerically pure pharmaceuticals. While the majority of chiral surfaces in practical use are based on achiral materials whose surfaces have been modified with enantiomerically pure chiral adsorbates, there are many inorganic materials with valuable surface properties that could be rendered enantiospecific, if their surfaces were intrinsically chiral. This Perspective discusses recent developments in the fabrication of intrinsically chiral surfaces exhibiting enantiospecific adsorption, surface chemistry and electron emission. We propose possible paths to the scalable fabrication of high-surface-area, enantiomerically pure surfaces and discuss opportunities for future progress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chirality of metallic crystal surfaces.
Fig. 2: Chiral metallic surfaces fabricated by electrodeposition.
Fig. 3: Surface restructuring methods for fabricating chiral structures.
Fig. 4: Patterning of textured metallic substrates.

Similar content being viewed by others

References

  1. Lang, J. C. & Armstrong, D. W. Chiral surfaces: the many faces of chiral recognition. Curr. Opin. Colloid Interface Sci. 32, 94–107 (2017).

    CAS  Google Scholar 

  2. Ahuja, S. Chiral Separations by Chromatography (Oxford Univ. Press, 2000).

  3. Maier, N. M., Franco, P. & Lindner, W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906, 3–33 (2001).

    CAS  Google Scholar 

  4. Baiker, A. Chiral catalysis on solids. Curr. Opin. Solid State Mater. Sci. 3, 86–93 (1998).

    CAS  Google Scholar 

  5. Dressler, D. H. & Mastai, Y. Enantioselective crystallization of histidine on chiral self-assembled films of cysteine. J. Colloid Interface Sci. 310, 653–660 (2007).

    CAS  Google Scholar 

  6. Gellman, A. J., Tysoe, W. T. & Zaera, F. Surface chemistry for enantioselective catalysis. Catal. Lett. 145, 220–232 (2015).

    CAS  Google Scholar 

  7. Kawasaki, T. & Soai, K. Asymmetric autocatalysis triggered by chiral crystals formed from achiral compounds and chiral isotopomers. Isr. J. Chem. 52, 582–590 (2012).

    CAS  Google Scholar 

  8. Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018).

    CAS  Google Scholar 

  9. Mastai, Y. Enantioselective crystallization on nanochiral surfaces. Chem. Soc. Rev. 38, 772–780 (2009).

    CAS  Google Scholar 

  10. Rosenberg, R. A., Mishra, D. & Naaman, R. Chiral selective chemistry induced by natural selection of spin-polarized electrons. Angew. Chem. Int. Ed. 54, 7295–7298 (2015).

    CAS  Google Scholar 

  11. Meemken, F. & Baiker, A. Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chem. Rev. 117, 11522–11569 (2017).

    CAS  Google Scholar 

  12. Jenkins, S. J. & Pratt, S. J. Beyond the surface atlas: a roadmap and gazetteer for surface symmetry and structure. Surf. Sci. Rep. 62, 373–429 (2007).

    CAS  Google Scholar 

  13. Jenkins, S. R. Chirality at Solid Surfaces 1st edn (John Wiley & Sons, 2018).

  14. Baber, A. E., Gellman, A. J., Sholl, D. S. & Sykes, E. C. H. The real structure of naturally chiral Cu{643}. J. Phys. Chem. C 112, 11086–11089 (2008).

    CAS  Google Scholar 

  15. Gellman, A. J. Chiral surfaces: accomplishments and challenges. ACS Nano 4, 5–10 (2010).

    CAS  Google Scholar 

  16. Gellman, A. J., Horvath, J. D. & Buelow, M. T. Chiral single crystal surface chemistry. J. Mol. Catal. A 167, 3–11 (2001).

    CAS  Google Scholar 

  17. Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003).

    CAS  Google Scholar 

  18. McFadden, C. F., Cremer, P. S. & Gellman, A. J. Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12, 2483–2487 (1996).

    CAS  Google Scholar 

  19. Ahmadi, A., Attard, G., Feliu, J. & Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir 15, 2420–2424 (1999).

    CAS  Google Scholar 

  20. Attard, G. A. et al. Temperature effects in the enantiomeric electro-oxidation of d- and l-glucose on Pt{643}(S). J. Phys. Chem. B 103, 1381–1385 (1999).

    CAS  Google Scholar 

  21. Gellman, A. J., Huang, Y., Koritnik, A. J. & Horvath, J. D. Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl)R&S surfaces. J. Phys. Condens. Matter 29, 034001–034001 (2017).

    Google Scholar 

  22. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J. Am. Chem. Soc. 123, 7953–7954 (2001).

    CAS  Google Scholar 

  23. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J. Am. Chem. Soc. 124, 2384–2392 (2002).

    CAS  Google Scholar 

  24. Greber, T., Sljivancanin, Z., Schillinger, R., Wider, J. & Hammer, B. Chiral recognition of organic molecules by atomic kinks on surfaces. Phys. Rev. Lett. 96, 056103 (2006).

    CAS  Google Scholar 

  25. Horvath, J. D., Baker, L. & Gellman, A. J. Enantiospecific orientation of R-3-methylcyclohexanone on the chiral Cu(643)R&S surfaces. J. Phys. Chem. C 112, 7637–7643 (2008).

    CAS  Google Scholar 

  26. Schillinger, R., Sljivancanin, Z., Hammer, B. & Greber, T. Probing enantioselectivity with X-ray photoelectron spectroscopy and density functional theory. Phys. Rev. Lett. 98, 136102 (2007).

    CAS  Google Scholar 

  27. Horvath, J. D., Koritnik, A., Kamakoti, P., Sholl, D. S. & Gellman, A. J. Enantioselective separation on a naturally chiral surface. J. Am. Chem. Soc. 126, 14988–14994 (2004).

    CAS  Google Scholar 

  28. Yun, Y. J. & Gellman, A. J. Enantioselective separation on naturally chiral metal surfaces: d,l-aspartic acid on Cu(3,1,17)R&S. surfaces. Angew. Chem. Int. Ed. 52, 3394–3397 (2013).

    CAS  Google Scholar 

  29. Yun, Y. J. & Gellman, A. J. Enantiospecific adsorption of amino acids on naturally chiral Cu{3,1,17}R&S surfaces. Langmuir 31, 6055–6063 (2015).

    CAS  Google Scholar 

  30. Fleming, C., King, M. & Kadodwala, M. Highly efficient electron beam induced enantioselective surface chemistry. J. Phys. Chem. C 112, 18299–18302 (2008).

    CAS  Google Scholar 

  31. Rampulla, D. M., Francis, A. J., Knight, K. S. & Gellman, A. J. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S. J. Phys. Chem. B 110, 10411–10420 (2006).

    CAS  Google Scholar 

  32. Rampulla, D. M. & Gellman, A. J. Enantioselective decomposition of chiral alkyl bromides on Cu(643)R&S: effects of moving the chiral center. Surf. Sci. 600, 2823–2829 (2006).

    CAS  Google Scholar 

  33. Gellman, A. J. et al. Superenantioselective chiral surface explosions. J. Am. Chem. Soc. 135, 19208–19214 (2013).

    CAS  Google Scholar 

  34. Mhatre, B. S., Dutta, S., Reinicker, A., Karagoz, B. & Gellman, A. J. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces. Chem. Commun. 52, 14125–14128 (2016).

    CAS  Google Scholar 

  35. Mhatre, B. S. et al. A window on surface explosions: tartaric acid on Cu(110). J. Phys. Chem. C 117, 7577–7588 (2013).

    CAS  Google Scholar 

  36. de Alwis, A. et al. Surface structure spread single crystals (S4Cs): preparation and characterization. Surf. Sci. 608, 80–87 (2013).

    Google Scholar 

  37. Karagoz, B., Payne, M., Reinicker, A., Kondratyuk, P. & Gellman, A. J. A most enantioselective chiral surface: tartaric acid on all surfaces vicinal to Cu(110). Langmuir 35, 16438–16443 (2019).

    CAS  Google Scholar 

  38. Reinicker, A. D. et al. Influence of step faceting on the enantiospecific decomposition of aspartic acid on chiral Cu surfaces vicinal to Cu{111}. Chem. Commun. 52, 11263–11266 (2016).

    CAS  Google Scholar 

  39. Kelso, M. V., Tubbesing, J. Z., Chen, Q. Z. & Switzer, J. A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643). J. Am. Chem. Soc. 140, 15812–15819 (2018).

    CAS  Google Scholar 

  40. Francis, A. J., Koritnik, A. J., Gellman, A. J. & Salvador, P. A. Chiral surfaces and metal/ceramic heteroepitaxy in the Pt/SrTiO3(621) system. Surf. Sci. 601, 1930–1936 (2007).

    CAS  Google Scholar 

  41. Francis, A. J. & Salvador, P. A. Chirally oriented heteroepitaxial thin films grown by pulsed laser deposition: Pt(621) on SrTiO3(621). J. Appl. Phys. 96, 2482–2493 (2004).

    CAS  Google Scholar 

  42. Bohannan, E. W., Kothari, H. M., Nicic, I. M. & Switzer, J. A. Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111). J. Am. Chem. Soc. 126, 488–489 (2004).

    CAS  Google Scholar 

  43. Gudavarthy, R. V. et al. Epitaxial electrodeposition of chiral CuO films from copper(ii) complexes of malic acid on Cu(111) and Cu(110) single crystals. J. Mater. Chem. 21, 6209–6216 (2011).

    CAS  Google Scholar 

  44. Kothari, H. M. et al. Enantiospecific electrodeposition of chiral CuO films from copper(ii) complexes of tartaric and amino acids on single-crystal Au(001). Chem. Mater. 16, 4232–4244 (2004).

    CAS  Google Scholar 

  45. Switzer, J. A., Kothari, H. M., Poizot, P., Nakanishi, S. & Bohannan, E. W. Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490–493 (2003).

    CAS  Google Scholar 

  46. Woodruff, D. P. Adsorbate-induced reconstruction of surfaces — an atomistic alternative to microscopic faceting. J. Phys. Condens. Matter 6, 6067–6094 (1994).

    CAS  Google Scholar 

  47. Woodruff, D. P. Solved and unsolved problems in surface structure determination. Surf. Sci. 500, 147–171 (2002).

    CAS  Google Scholar 

  48. Chen, Q. & Richardson, N. V. Surface facetting induced by adsorbates. Prog. Surf. Sci. 73, 59–77 (2003).

    CAS  Google Scholar 

  49. Gellman, A. J. & Ernst, K. H. Chiral autocatalysis and mirror symmetry breaking. Catal. Lett. 148, 1610–1621 (2018).

    CAS  Google Scholar 

  50. Lawton, T. J. et al. Long range chiral imprinting of Cu(110) by tartaric acid. J. Phys. Chem. C 117, 22290–22297 (2013).

    CAS  Google Scholar 

  51. Schunack, M., Laegsgaard, E., Stensgaard, I., Johannsen, I. & Besenbacher, F. A chiral metal surface. Angew. Chem. Int. Ed. 40, 2623–2626 (2001).

    CAS  Google Scholar 

  52. Schunack, M. et al. Anchoring of organic molecules to a metal surface: HtBDC on Cu(110). Phys. Rev. Lett. 86, 456–459 (2001).

    CAS  Google Scholar 

  53. Zhao, X. Y. Fabricating homochiral facets on Cu(001) with l-lysine. J. Am. Chem. Soc. 122, 12584–12585 (2000).

    CAS  Google Scholar 

  54. Zhao, X. Y., Zhao, R. G. & Yang, W. S. Scanning tunneling microscopy investigation of l-lysine adsorbed on Cu(001). Langmuir 16, 9812–9818 (2000).

    CAS  Google Scholar 

  55. Cheong, W. Y. & Gellman, A. J. Energetics of chiral imprinting of Cu(100) by lysine. J. Phys. Chem. C 115, 1031–1035 (2011).

    CAS  Google Scholar 

  56. Behar-Levy, H., Neumann, O., Naaman, R. & Avnir, D. Chirality induction in bulk gold and silver. Adv. Mater. 19, 1207–1211 (2007).

    CAS  Google Scholar 

  57. Pachon, L. D. et al. Chiral imprinting of palladium with cinchona alkaloids. Nat. Chem. 1, 160–164 (2009).

    Google Scholar 

  58. Gautier, C. & Burgi, T. Chiral gold nanoparticles. ChemPhysChem 10, 483–492 (2009).

    CAS  Google Scholar 

  59. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318, 430–433 (2007).

    CAS  Google Scholar 

  60. Zeng, C. J. & Jin, R. C. Chiral gold nanoclusters: atomic level origins of chirality. Chem. Asian J. 12, 1839–1850 (2017).

    CAS  Google Scholar 

  61. Shukla, N., Bartel, M. A. & Gellman, A. J. Enantioselective separation on chiral Au nanoparticles. J. Am. Chem. Soc. 132, 8575–8580 (2010).

    CAS  Google Scholar 

  62. Shukla, N. et al. Polarimetric detection of enantioselective adsorption by chiral Au nanoparticles — effects of temperature, wavelength and size. Nanomater. Nanotechnol. 5, 1 (2015).

    CAS  Google Scholar 

  63. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    CAS  Google Scholar 

  64. Lee, H. E. et al. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 9, 8384–8393 (2015).

    CAS  Google Scholar 

  65. Ming, T. et al. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 131, 16350–16351 (2009).

    CAS  Google Scholar 

  66. Hong, J. W., Lee, S. U., Lee, Y. W. & Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 134, 4565–4568 (2012).

    CAS  Google Scholar 

  67. Zhang, L. et al. Synthesis of convex hexoctahedral palladium@gold core-shell nanocrystals with {431} high-index facets with remarkable electrochemiluminescence activities. ACS Nano 8, 5953–5958 (2014).

    CAS  Google Scholar 

  68. Lee, H. E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    CAS  Google Scholar 

  69. Deng, J. H., Fu, J. X., Ng, J. & Huang, Z. F. Tailorable chiroptical activity of metallic nanospiral arrays. Nanoscale 8, 4504–4510 (2016).

    CAS  Google Scholar 

  70. Gibbs, J. G. et al. Nanohelices by shadow growth. Nanoscale 6, 9457–9466 (2014).

    CAS  Google Scholar 

  71. Goyal, A. in Second Generation HTS Conductors (ed. Goyal, A.) Ch. 2, 347 (Springer, 2005).

  72. Goyal, A., Paranthaman, M. P. & Schoop, U. The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552–561 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work in the field of chiral surface chemistry and catalysis has been funded by the US Department of Energy under grant number DE-SC0008703 and by the US National Science Foundation under grant number NSF CHE1764252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Gellman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, N., Gellman, A.J. Chiral metal surfaces for enantioselective processes. Nat. Mater. 19, 939–945 (2020). https://doi.org/10.1038/s41563-020-0734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0734-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing