Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi

Abstract

The Dirac and Weyl semimetals are unusual materials in which the nodes of the bulk states are protected against gap formation by crystalline symmetry1,2,3,4. The chiral anomaly5,6, predicted to occur in both systems7,8,9,10, was recently observed as a negative longitudinal magnetoresistance (LMR) in Na3Bi (ref. 11) and in TaAs (ref. 12). An important issue is whether Weyl physics appears in a broader class of materials. We report evidence for the chiral anomaly in the half-Heusler GdPtBi. In zero field, GdPtBi is a zero-gap semiconductor with quadratic bands13,14. In a magnetic field, the Zeeman energy leads to Weyl nodes15. We have observed a large negative LMR with the field-steering properties specific to the chiral anomaly. The chiral anomaly also induces strong suppression of the thermopower. We report a detailed study of the thermoelectric response function αxx of Weyl fermions. The scheme of creating Weyl nodes from quadratic bands suggests that the chiral anomaly may be observable in a broad class of semimetals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The field-induced band crossing in GdBiPt and the chiral anomaly in its longitudinal magnetoresistance (LMR).
Figure 2: Dependence of the LMR in GdBiPt on field-tilt angles (, ).
Figure 3: Variation of the thermopower with B and quantum oscillations in GdBiPt.
Figure 4: Anisotropy of the thermoelectric response in GdBiPt in a longitudinal field.

Similar content being viewed by others

References

  1. Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  2. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  3. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Article  Google Scholar 

  4. Wang, Z. J. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  Google Scholar 

  5. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  Google Scholar 

  6. Bell, J. S. & Jackiw, R. A PCAC Puzzle: π0γγ in the σ-model. Nuovo Cimento 60A, 47–61 (1969).

    Article  Google Scholar 

  7. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  Google Scholar 

  8. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  Google Scholar 

  9. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  Google Scholar 

  10. Burkov, A. A. Negative longitudinal magnetoresistance in Dirac and Weyl metals. Phys. Rev. B 91, 245157 (2015).

    Article  Google Scholar 

  11. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  CAS  Google Scholar 

  12. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  13. Canfield, P. C. et al. Magnetism and heavy fermion-like behavior in the RBiPt series. J. Appl. Phys. 70, 5800–5802 (1991).

    Article  CAS  Google Scholar 

  14. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Article  Google Scholar 

  15. Moon, E.-G., Xu, C., Kim, Y. B. & Balents, L. Non-Fermi-liquid and topological states with strong spin-orbit coupling. Phys. Rev. Lett. 111, 206401 (2013).

    Article  Google Scholar 

  16. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  17. Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).

    Article  Google Scholar 

  18. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  19. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  20. Nakajima, Y. et al. Topological RPdBi half-Heusler semimetals: a new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1, e1500242 (2015).

    Article  Google Scholar 

  21. Müller, R. A. et al. Magnetic structure of GdBiPt: a candidate antiferromagnetic topological insulator. Phys. Rev. B 90, 041109(R) (2014).

    Article  Google Scholar 

  22. Cano, J. et al. The chiral anomaly factory: creating Weyls with a magnetic field. Preprint at http://arxiv.org/abs/1604.08601 (2016).

  23. Casper, F. & Felser, C. Giant magnetoresistance in semiconducting DyNiBi. Solid State Commun. 148, 175–177 (2008).

    Article  CAS  Google Scholar 

  24. Lundgren, R., Laurell, P. & Fiete, G. A. Thermoelectric properties of Weyl and Dirac semimetals. Phys. Rev. B 90, 165115 (2014).

    Article  Google Scholar 

  25. Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    Article  Google Scholar 

  26. Spivak, B. Z. & Andreev, A. Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals. Preprint at http://arxiv.org/abs/1510.01817v2 (2016).

  27. Liang, T. et al. Evidence for massive bulk Dirac fermions in Pb1xSnxSe from Nernst and thermopower experiments. Nature Commun. 4, 2696 (2013).

    Article  Google Scholar 

  28. Roth, L. M. & Argyres, P. N. in Semiconductors and Semimetals Vol. 1 (eds Williardson, R. K. & Beer, A. C.) (Academic, 1966).

    Google Scholar 

  29. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k package; http://www.wien2k.at

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  31. Becke, A. D. & Johnson, E. R. A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  32. Dwight, E. in Proc. 11th Rare Earth Research Conf. Vol. 2 (eds Haschke, J. M. & Eick, H. A.) 642 (US Atomic Energy Commission, 1974).

    Google Scholar 

  33. Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Cano, B. Bradlyn and J. Xiong for discussions, and S. Koohpayeh, J. Krizan and W. Xie for technical assistance. The research is supported by a MURI award for topological insulators (ARO W911NF-12-1-0461) and by the Army Research Office (ARO W911NF-11-1-0379). The growth and characterization of crystals were performed by S.K. and R.J.C., with support from the National Science Foundation (NSF MRSEC grant DMR 1420541). C.A.B. was an REU participant funded by the NSF-MRSEC grant DMR 1420541. N.P.O. acknowledges the support of the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4539. B.A.B. acknowledges support by NSF CAREER DMR-095242, ONR-N00014-11-1-0635, NSF grant DMR 1420541, Packard Foundation and a Keck grant.

Author information

Authors and Affiliations

Authors

Contributions

M.H. performed most of the measurements with early assistance from C.A.B. The crystals were grown and characterized by S.K. and R.J.C. Analyses of the results were done by M.H., Z.W., Q.G., B.A.B. and N.P.O. Simulations of current distributions were performed by S.L. The manuscript was written by M.H. and N.P.O., with contributions from all authors.

Corresponding authors

Correspondence to Max Hirschberger or N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirschberger, M., Kushwaha, S., Wang, Z. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nature Mater 15, 1161–1165 (2016). https://doi.org/10.1038/nmat4684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing