Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals

Abstract

In condensed matter, the chiral anomaly describes the conversion of left-moving Dirac–Weyl fermions to right-moving ones in parallel electric and magnetic fields. The resulting axial current leads to an unusual negative longitudinal magnetoresistance (LMR). Five years ago, the discovery of Dirac and Weyl semimetals led to many experiments investigating this phenomenon. In this Review, we critically assess LMR experiments in the Dirac–Weyl semimetals Na3Bi, GdPtBi, ZrTe5, Cd3As2 and TaAs, which have shown signatures of the chiral anomaly, and discuss possible current-jetting artefacts. The focus is on Dirac and Weyl nodes that are rigorously symmetry protected. Other experiments, such as non-local transport, thermopower, thermal conductivity and optical pump–probe response, are also reviewed. Looking ahead, we anticipate what can be gleaned from improved LMR experiments and new experiments on the thermal conductivity and optical response. An expanded purview of the chiral anomaly is provided in the Supplementary Information.

Key points

  • The chiral anomaly describes the conversion of left-moving massless fermions to right-moving ones in the presence of electromagnetic fields and has long been predicted to be observable in crystals.

  • The chiral anomaly was predicted in 1983 to be observable in crystals and the discovery of Dirac and Weyl semimetals with symmetry-protected nodes now enables tests of the prediction.

  • Longitudinal magnetoresistance measurements can provide evidence of the chiral anomaly but can also contain artefacts caused by current jetting.

  • Other experimental measurements of the chiral anomaly include thermal conductivity and optical response.

  • These experiments join a long line of anomaly experiments that extend over a vast range of energy scales in many subfields of physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Landau quantization.
Fig. 2: Magnetoresistance of Na3Bi and GdPtBi.
Fig. 3: Unusual electronic properties of ZrTe5.
Fig. 4: Experiments on TaAs and GdPtBi.
Fig. 5: Optical detection of the chiral anomaly in TaAs.

Similar content being viewed by others

References

  1. Peskin, M. E. & Schroeder, D. V. Introduction to Quantum Field Theory Ch. 19 (Westview Press, 1995).

  2. Nakahara, M. Geometry, Topology and Physics (CRC Press, 2003).

  3. Bertlmann, R. A. Anomalies in Quantum Field Theory (Clarendon Press, 2011).

  4. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  5. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0γγ in the σ-model. Nuovo Cim. 60A, 47–61 (1969).

    Article  ADS  Google Scholar 

  6. Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl Fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  8. Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  9. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  10. Fang, C., Gilbert, M. J., Dai, X. & Andrei Bernevig, B. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Article  ADS  Google Scholar 

  11. Young, S. M. et al. Rappe, Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  12. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  13. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  14. Aji, V. Adler-Bell-Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates. Phys. Rev. B 85, 241101(R) (2012).

    Article  ADS  Google Scholar 

  15. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  16. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  17. Burkov, A. A. Negative longitudinal magnetoresistance in Dirac and Weyl metals. Phys. Rev. B 91, 245157 (2015).

    Article  ADS  Google Scholar 

  18. Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016).

    Article  ADS  Google Scholar 

  19. dos Reis, R. D. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).

    Article  Google Scholar 

  20. Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    Google Scholar 

  21. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. Kharzeev, D. E. & Liao, J. Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions. Nat. Rev. Phys. 3, 55–63 (2021).

    Article  Google Scholar 

  23. Fradkin, E., Dagotto, E. & Boyanovsky, D. Physical realization of the parity anomaly in condensed matter physics. Phys. Rev. Lett. 57, 2967 (1986).

    Article  ADS  Google Scholar 

  24. Kim, H.-J. et al. Dirac versus Weyl Fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111, 246603 (2013).

    Article  ADS  Google Scholar 

  25. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  26. Okugawa, R. & Murakami, S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B 89, 235315 (2014).

    Article  ADS  Google Scholar 

  27. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    Article  ADS  Google Scholar 

  28. Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  29. Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013).

    Article  ADS  Google Scholar 

  30. Vazifeh, M. M. & Franz, M. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013).

    Article  ADS  Google Scholar 

  31. Basar, G., Kharzeev, D. E. & Yee, H. U. Triangle anomaly in Weyl semimetals. Phys. Rev. B 89, 035142 (2014).

    Article  ADS  Google Scholar 

  32. Song, Z. & Dai, X. Hear the sound of Weyl fermions. Phys. Rev. X 9, 021053 (2019).

    Google Scholar 

  33. Yoshida, K. Transport of spatially inhomogeneous current in a compensated metal under magnetic fields. I. Potental and current distributions. J. Appl. Phys. 50, 4159 (1979).

    Article  ADS  Google Scholar 

  34. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    Article  ADS  Google Scholar 

  36. Cano, J. et al. Chiral anomaly factory: creating Weyl fermions with a magnetic field. Phys. Rev. B 95, 161306(R) (2017).

    Article  ADS  Google Scholar 

  37. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  38. Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat. Commun. 8, 15512 (2017).

    Article  ADS  Google Scholar 

  39. Xu, B. et al. Temperature-driven topological phase transition and intermediate Dirac semimetal phase in ZrTe5. Phys. Rev. Lett. 121, 187401 (2018).

    Article  ADS  Google Scholar 

  40. Liang, T. et al. Anomalous Hall effect in ZrTe5. Nat. Phys. 14, 451–455 (2018).

    Article  Google Scholar 

  41. Mutch, J. et al. Evidence for a strain-tuned topological phase transition in ZrTe5. Sci. Adv. 5, eaav9771 (2019).

    Article  ADS  Google Scholar 

  42. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  43. Wu, M. et al. Probing the chiral anomaly by planar Hall effect in Dirac semimetal Cd3As2 nanoplates. Phys. Rev. B 98, 161110(R) (2018).

    Article  ADS  Google Scholar 

  44. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  45. Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    Article  ADS  Google Scholar 

  46. Niemann, A. et al. Chiral magnetoresistance in the Weyl semimetal NbP. Sci. Rep. 7, 43394 (2017).

    Article  ADS  Google Scholar 

  47. Li, Y. et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects. Front. Phys. 12, 127205 (2017).

    Article  ADS  Google Scholar 

  48. Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat. Commun. 8, 15512 (2017).

    Article  ADS  Google Scholar 

  49. Lundgren, R., Laurell, P. & Fiete, G. A. Thermoelectric properties of Weyl and Dirac semimetals. Phys. Rev. B 90, 165115 (2014).

    Article  ADS  Google Scholar 

  50. Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    Article  ADS  Google Scholar 

  51. Spivak, B. Z. & Andreev, A. Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals. Phys. Rev. B 93, 085107 (2016).

    Article  ADS  Google Scholar 

  52. Jia, Z. et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat. Commun. 7, 13013 (2016).

    Article  ADS  Google Scholar 

  53. Xiang, J. et al. Giant magnetic quantum oscillations in the thermal conductivity of TaAs: indications of chiral zero sound. Phys. Rev. X 9, 031036 (2019).

    Google Scholar 

  54. Burkov, A. A. et al. Dynamical density response and optical conductivity in topological metals. Phys. Rev. B 98, 165123 (2018).

    Article  ADS  Google Scholar 

  55. Jadidi, M. M. et al. Nonlinear optical control of chiral charge pumping in a topological Weyl semimetal. Phys. Rev. B 102, 245123 (2020).

    Article  ADS  Google Scholar 

  56. Cheng, B., Schumann, T., Stemmer, S. & Armitage, N. P. Probing charge pumping and relaxation of the chiral anomaly in a Dirac semimetal. Sci. Adv. 7, eabg0914 (2021).

    Article  ADS  Google Scholar 

  57. Bevan, T. D. C. et al. Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis. Nature 386, 689–692 (1997).

    Article  ADS  Google Scholar 

  58. Cheng, T.-P. & Li, L.-F. Gauge Theory of Elementary Particle Physics (Clarendon Press, 1984).

  59. Aitchison, I. J. R. & Hey, A. J. G. Gauge Theories in Particle Physics Vol. 2 (CRC Press/Taylor Francis, 2013).

  60. Weinberg, S. The Quantum Theory of Fields Vol. II (Cambridge Univ. Press, 2005).

  61. Adler, S. L. in 50 Years of Yang-Mills Theory (ed. ’t Hooft, G.) 187–228 (World Scientific, 2005).

  62. Jackiw, R. W. Axial anomaly. Scholarpedia 3, 7302 (2008).

    Article  ADS  Google Scholar 

  63. Adler, S. L. & Bardeen, W. A. Absence of higher-order corrections in the anomalous axial-vector divergence equation. Phys. Rev. 182, 1517 (1969).

    Article  ADS  Google Scholar 

  64. Fujikawa, K. Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett. 42, 1195 (1979).

    Article  ADS  Google Scholar 

  65. Fujikawa, K. Path integral for gauge theories with fermions. Phys. Rev. D 21, 2848 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  66. Hooft, G. How instantons solve the U(1) problem. Phys. Rep. 142, 357–387 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  67. Frankel, T. The Geometry of Physics: An Introduction (Cambridge Univ. Press, 2011).

Download references

Acknowledgements

We are indebted to Stephen Adler for careful reading of the draft and providing valuable comments. N.P.O. acknowledges the support of the U.S. Army Research Office (ARO contract W911NF-16-1-0116), the U.S. National Science Foundation (grant DMR 1420541) and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4539.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Chandra Shekhar, Qiang Li and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, N.P., Liang, S. Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat Rev Phys 3, 394–404 (2021). https://doi.org/10.1038/s42254-021-00310-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00310-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing