Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement

Abstract

Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons1,2, the latter proving essential in electron transfer reactions3. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs—including their surface composition—unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NC–ligand classification and exchanges/displacements.
Figure 2: Ligand displacement via amide formation and esterification.
Figure 3: Ligand shell composition.
Figure 4: Catalysed esterification.
Figure 5: Catalysed transesterification.

Similar content being viewed by others

References

  1. De Roo, J. et al. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases. J. Am. Chem. Soc. 136, 9650–9657 (2014).

    Article  CAS  Google Scholar 

  2. De Roo, J. et al. Carboxylic-acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif. Angew. Chem. Int. Ed. 54, 6488–6491 (2015).

    Article  CAS  Google Scholar 

  3. Schrauben, J. N. et al. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 336, 1298–1301 (2012).

    Article  CAS  Google Scholar 

  4. Ibáñez, M. et al. Electron doping in bottom–up engineered thermoelectric nanomaterials through HCl-mediated ligand displacement. J. Am. Chem. Soc. 137, 4046–4049 (2015).

    Article  Google Scholar 

  5. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    Article  CAS  Google Scholar 

  6. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  7. Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    Article  CAS  Google Scholar 

  8. Green, M. L. H. & Parkin, G. Application of the covalent bond classification method for the teaching of inorganic chemistry. J. Chem. Educ. 91, 807–816 (2014).

    Article  CAS  Google Scholar 

  9. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344, 1380–1384 (2014).

    Article  CAS  Google Scholar 

  10. Owen, J. S., Park, J., Trudeau, P. E. & Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. J. Am. Chem. Soc. 130, 12279–12280 (2008).

    Article  CAS  Google Scholar 

  11. Fritzinger, B., Capek, R. K., Lambert, K., Martins, J. C. & Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 132, 10195–10201 (2010).

    Article  CAS  Google Scholar 

  12. Dierick, R. et al. Surface chemistry of CuInS2 colloidal nanocrystals, tight binding of L-type ligands. Chem. Mater. 26, 5950–5957 (2014).

    Article  CAS  Google Scholar 

  13. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    Article  CAS  Google Scholar 

  14. Shylesh, S., Schunemann, V. & Thiel, W. R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49, 3428–3459 (2010).

    Article  CAS  Google Scholar 

  15. Huang, W., Hua, Q. & Cao, T. Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal. Lett. 144, 1355–1369 (2014).

    Article  CAS  Google Scholar 

  16. Wu, Z. et al. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014).

    Article  CAS  Google Scholar 

  17. Zeng, H. C. Integrated nanocatalysts. Acc. Chem. Res. 46, 226–235 (2013).

    Article  CAS  Google Scholar 

  18. Niu, Z. & Li, Y. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26, 72–83 (2014).

    Article  CAS  Google Scholar 

  19. De Roo, J. et al. Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles. J. Nanopart. Res. 15, 1778 (2013).

    Article  Google Scholar 

  20. Hens, Z. & Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 25, 1211–1221 (2013).

    Article  CAS  Google Scholar 

  21. Rosen, E. L. et al. Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein’s salt. Angew. Chem. Int. Ed. 51, 684–689 (2012).

    Article  CAS  Google Scholar 

  22. Dong, A. G. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).

    Article  CAS  Google Scholar 

  23. McNeff, C. V. et al. A continuous catalytic system for biodiesel production. Appl. Catal. A 343, 39–48 (2008).

    Article  CAS  Google Scholar 

  24. Kiss, A. A., Dimian, A. C. & Rothenberg, G. Solid acid catalysts for biodiesel production—towards sustainable energy. Adv. Synth. Catal. 348, 75–81 (2006).

    Article  CAS  Google Scholar 

  25. José da Silva, M. & Lemos Cardoso, A. Heterogeneous tin catalysts applied to the esterification and transesterification reactions. J. Catal. 2013, 1–11 (2013).

    Article  Google Scholar 

  26. Meher, L. C., Sagar, D. V. & Naik, S. N. Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Energ. Rev. 10, 248–268 (2006).

    Article  CAS  Google Scholar 

  27. Narayanan, R. & El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005).

    Article  CAS  Google Scholar 

  28. Chen, K., Wu, H. T., Hua, Q., Chang, S. J. & Huang, W. X. Enhancing catalytic selectivity of supported metal nanoparticles with capping ligands. Phys. Chem. Chem. Phys. 15, 2273–2277 (2013).

    Article  CAS  Google Scholar 

  29. Jenkins, S. V., Chen, S. & Chen, J. Gold–copper alloyed nanorods for metal-catalyzed organic reactions: implication of surface ligands on nanoparticle-based heterogeneous catalysis. Tetrahedron Lett. 56, 3368–3372 (2015).

    Article  CAS  Google Scholar 

  30. Cano, I. et al. Air-stable gold nanoparticles ligated by secondary phosphine oxides as catalyst for the chemoselective hydrogenation of substituted aldehydes: a remarkable ligand effect. J. Am. Chem. Soc. 137, 7718–7727 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Foundation Flanders (FWO). We are grateful to P. Van Der Voort and E. De Canck for scientific discussions regarding the catalytic properties. The NMR equipment used in this work was financed through a grant from the Hercules Foundation (AUGE09006). Z.H. acknowledges funding from the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), BelSPo (IAP 7.35, photonics@be), the Research Foundation Flanders (research project G.0760.12) and Ghent University (GOA 01G01513).

Author information

Authors and Affiliations

Authors

Contributions

J.D.R. designed and carried out the experiments, interpreted the data, made the figures and wrote the manuscript. I.V.D. and Z.H. initiated the research and supervised the experiments. Z.H. also wrote the manuscript. J.C.M. supervised the research, provided the NMR instrumentation and aided in interpretation and discussions regarding the NMR data. All authors commented on the manuscript.

Corresponding authors

Correspondence to Jonathan De Roo or Zeger Hens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Roo, J., Van Driessche, I., Martins, J. et al. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement. Nature Mater 15, 517–521 (2016). https://doi.org/10.1038/nmat4554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing