Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reaction intermediates in the synthesis of colloidal nanocrystals

Abstract

Over the past 40 years, scientists have developed routes to synthesize colloidal nanocrystals of different compositions and with tunable size and shape. These features dictate the properties of these nanomaterials and, thus, their control aids the discovery of different physical chemical phenomena, many of which have contributed to technological advances; for example, the use of semiconductor nanocrystals as active components in displays with excellent colour purity. Yet, the synthesis of colloidal nanocrystals still proceeds by trial and error. The search for the reaction conditions to obtain nanocrystals with the desired compositions, sizes and shapes is time consuming and can fail to deliver the target product. In this Perspective, we discuss the importance of identifying reaction intermediates during the formation of colloidal nanocrystals for the development of a retrosynthetic approach to these nanomaterials. We select molecular complexes and clusters, coordination polymers and mesophases, and inorganic nanoparticles as some of the most common intermediates. The discovered pathways pinpoint the steps that enable a more predictive synthesis of colloidal nanocrystals. This Perspective encourages more mechanistic studies to eventually implement the concept of retrosynthesis for these nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical nucleation theory.
Fig. 2: Molecular complexes and clusters as reaction intermediates.
Fig. 3: Coordination polymers and mesophases as reaction intermediates.
Fig. 4: Inorganic nanoparticles as reaction intermediates.

Similar content being viewed by others

References

  1. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Eustis, S. & El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2021).

    Article  Google Scholar 

  5. Guntern, Y. T. et al. Colloidal nanocrystals as electrocatalysts with tunable activity and selectivity. ACS Catal. 11, 1248–1295 (2021).

    Article  CAS  Google Scholar 

  6. Cargnello, M. Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts. Chem. Mater. 31, 576–596 (2019).

    Article  CAS  Google Scholar 

  7. Witte, P. T. et al. BASF NanoSelect technology: innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 55, 505–511 (2012).

    Article  CAS  Google Scholar 

  8. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, L., Mendoza-Garcia, A., Li, Q. & Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–11051 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Buonsanti, R., Loiudice, A. & Mantella, V. Colloidal nanocrystals as precursors and intermediates in solid state reactions for multinary oxide nanomaterials. Acc. Chem. Res. 54, 754–764 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Heuer-Jungemann, A. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119, 4819–4880 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  13. Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    Article  CAS  Google Scholar 

  15. Nicolalaou, K. C. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc. R. Soc A. 470, 20130690 (2014).

    Article  Google Scholar 

  16. Koziej, D. Revealing complexity of nanoparticle synthesis in solution by in situ hard X-ray spectroscopy - today and beyond. Chem. Mater. 28, 2478–2490 (2016).

    Article  CAS  Google Scholar 

  17. Wu, S., Li, M. & Sun, Y. In situ synchrotron X‐ray characterization shining light on the nucleation and growth kinetics of colloidal nanoparticles. Angew. Chem. Int. Ed. 131, 9083–9091 (2019).

    Article  Google Scholar 

  18. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Peng, Z. A. & Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Riedinger, A. et al. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 16, 743–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cunningham, P. D., Coropceanu, I., Mulloy, K., Cho, W. & Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: a connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS Nano 14, 3847–3857 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ning, J., Liu, J., Levi-Kalisman, Y., Frenkel, A. I. & Banin, U. Controlling anisotropic growth of colloidal ZnSe nanostructures. J. Am. Chem. Soc. 140, 14627–14637 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Gary, D. C., Terban, M. W., Billinge, S. J. L. & Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432–1441 (2015).

    Article  CAS  Google Scholar 

  24. Gary, D. C. et al. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Friedfeld, M. R., Stein, J. L. & Cossairt, B. M. Main-group-semiconductor cluster molecules as synthetic intermediates to nanostructures. Inorg. Chem. 56, 8689–8697 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Mule, A. S. et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 143, 2037–2048 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Harris, D. K. & Bawendi, M. G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gary, D. C., Glassy, B. A. & Cossairt, B. M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 26, 1734–1744 (2014).

    Article  CAS  Google Scholar 

  29. Xie, R., Battaglia, D. & Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432–15433 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, H. et al. Molecular-level understanding of continuous growth from iron–oxo clusters to iron oxide nanoparticles. J. Am. Chem. Soc. 141, 7037–7045 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Kwon, S. G. et al. Kinetics of monodisperse iron oxide nanocrystal formation by ‘heating-up’ process. J. Am. Chem. Soc. 129, 12571–12584 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Feld, A. et al. Chemistry of shape-controlled iron oxide nanocrystal formation. ACS Nano 13, 152–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Strach, M. et al. Insights into reaction intermediates to predict synthetic pathways for shape-controlled metal nanocrystals. J. Am. Chem. Soc. 141, 16312–16322 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mantella, V., Castilla-Amorós, L. & Buonsanti, R. Shaping non-noble metal nanocrystals: via colloidal chemistry. Chem. Sci. 11, 11394–11403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  36. Porter, R. S., Barrall, E. M. II & Johnson, J. F. Order and flow of liquid crystals. XVI. Thermodynamic order in mesophases. Acc. Chem. Res. 2, 53–58 (1969).

    Article  CAS  Google Scholar 

  37. Nevers, D. R. et al. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 140, 3652–3662 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Mantella, V. et al. Polymer lamellae as reaction intermediates in the formation of copper nanospheres as evidenced by in situ X-ray studies. Angew. Chem. Int. Ed. 59, 11627–11633 (2020).

    Article  CAS  Google Scholar 

  39. Gromova, M. et al. Growth mechanism and surface state of CuInS2 nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 139, 15748–15759 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48, 6861–6864 (2009).

    Article  CAS  Google Scholar 

  41. Yang, J., Son, J. S., Yu, J. H., Joo, J. & Hyeon, T. Advances in the colloidal synthesis of two-dimensional semiconductor nanoribbons. Chem. Mater. 25, 1190–1198 (2013).

    Article  CAS  Google Scholar 

  42. Liu, Y. H., Wang, F., Wang, Y., Gibbons, P. C. & Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Loh, N. D. et al. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 9, 77–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J. et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy. J. Am. Chem. Soc. 141, 763–768 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Son, J. S. et al. Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. Small 8, 2394–2402 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, J. H. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. de la Mata, M. et al. A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire. J. Mater. Chem. C 1, 4300–4312 (2013).

    Article  Google Scholar 

  48. Wang, F., Richards, V. N., Shields, S. P. & Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26, 5–21 (2014).

    Article  Google Scholar 

  49. Salzmann, B. B. V., van der Sluijs, M. M., Soligno, G. & Vanmaekelbergh, D. Oriented attachment: from natural crystal growth to a materials engineering tool. Acc. Chem. Res. 54, 787–797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002).

    Article  CAS  Google Scholar 

  53. Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Liao, H. G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Delerue, C. Order and progress. Nat. Mater. 15, 498–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Baumgardner, W. J., Withhaman, K. & Hanrath, T. Confined-but-connected quantum dot solids via controlled ligand displacement. Nano Lett. 13, 3225–3231 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rivest, J. B. & Jain, P. K. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 560, 513–517 (2018).

    Article  Google Scholar 

  61. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Mantella, V. et al. Synthesis and size-dependent optical properties of intermediate band gap Cu3VS4 nanocrystals. Chem. Mater. 31, 532–540 (2019).

    Article  CAS  Google Scholar 

  63. Mantella, V., Varandili, S. B., Pankhurst, J. R. & Buonsanti, R. Colloidal synthesis of Cu−M−S (M = V, Cr, Mn) nanocrystals by tuning the copper precursor reactivity. Chem. Mater. 32, 9780–9786 (2020).

    Article  CAS  Google Scholar 

  64. Muthuswamy, E. & Brock, S. L. Solid-state phase transformations in solution: templated conversion of nanoscale nickel phosphides. Chem. Commun. 47, 12334–12336 (2011).

    Article  CAS  Google Scholar 

  65. Shevchenko, E. V. et al. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 125, 9090–9101 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Schaak, R. E. et al. Metallurgy in a beaker: nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials. J. Am. Chem. Soc. 127, 3506–3515 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Gadiyar, C. et al. Nanocrystals as precursors in solid-state reactions for size- and shape-controlled polyelemental nanomaterials. J. Am. Chem. Soc. 142, 15931–15940 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. M., Kraynak, L. A. & Prieto, A. L. A directed route to colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4. Angew. Int. Chem. Ed. 132, 3062–3066 (2020).

    Article  Google Scholar 

  69. Krishnadasan, S., Brown, R. J. C., deMello, A. J. & DeMello, J. C. Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7, 1434–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Rakita, Y. et al. Active reaction control of Cu redox state based on real-time feedback from in situ synchrotron measurements. J. Am. Chem. Soc. 142, 18758–18762 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Kovnir, K. Predictive synthesis. Chem. Mater. 33, 4835–4841 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the great support of the École Politechnique Fédérale de Lausanne over the past six years.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and R.B. discussed the content and wrote the manuscript.

Corresponding author

Correspondence to Raffaella Buonsanti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Brian Korgel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiudice, A., Buonsanti, R. Reaction intermediates in the synthesis of colloidal nanocrystals. Nat. Synth 1, 344–351 (2022). https://doi.org/10.1038/s44160-022-00056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00056-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing