Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

Abstract

The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts1; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades2,3; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials4,5,6 comprising spatially compartmentalized functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthetic strategy for spatially orthogonal functionalization of hierarchical architectures.
Figure 2: Visualization of spatially orthogonal Pd and Pt NPs.
Figure 3: Reaction dynamics of cinnamyl alcohol oxidation.

References

  1. 1

    Parlett, C. M. A., Wilson, K. & Lee, A. F. Hierarchical porous materials: Catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Climent, M. J., Corma, A., Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Merino, E. et al. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. Chem. Mater. 25, 981–988 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 314, 1107–1110 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Kim, J., Piao, Y. & Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Ragesh, P., Ganesh, V. A., Nair, S. V. & Nair, A. S. A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2, 14773–14797 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Zhou, W., Ding, L., Yang, S. & Liu, J. Orthogonal orientation control of carbon nanotube growth. J. Am. Chem. Soc. 132, 336–341 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Paciello, A. & Santonicola, M. G. A supramolecular two-photon-active hydrogel platform for direct bioconjugation under near-infrared radiation. J. Mater. Chem. B 3, 1313–1320 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Mater. 13, 515–523 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Grunes, J., Zhu, J., Anderson, E. A. & Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 106, 11463–11468 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nature Chem. 3, 372–376 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Dhainaut, J., Dacquin, J.-P., Lee, A. F. & Wilson, K. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem. 12, 296–303 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Wainwright, S. G. et al. True liquid crystal templating of SBA-15 with reduced microporosity. Micropor. Mesopor. Mater. 172, 112–117 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Mazumder, V. & Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Motokura, K., Tada, M. & Iwasawa, Y. Heterogeneous organic base-catalyzed reactions enhanced by acid supports. J. Am. Chem. Soc. 129, 9540–9541 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 94, 223–253 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z. & Finley, J. W. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 60, 6658–6677 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Hackett, S. F. J. et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. 119, 8747–8750 (2007).

    Article  Google Scholar 

  24. 24

    Lee, A. F. et al. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd. J. Am. Chem. Soc. 133, 5724–5727 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Durndell, L. J. et al. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation. Sci. Rep. 5, 9425 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Durndell, L. J., Parlett, C. M. A., Hondow, N. S., Wilson, K. & Lee, A. F. Tunable Pt nanocatalysts for the aerobic selox of cinnamyl alcohol. Nanoscale 5, 5412–5419 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Zhang, F., Jiang, H., Li, X., Wu, X. & Li, H. Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions. ACS Catal. 4, 394–401 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Zeidan, R. K., Hwang, S.-J. & Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. 45, 6332–6335 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Dacquin, J.-P. et al. An efficient route to highly organized, tunable macroporous-mesoporous alumina. J. Am. Chem. Soc. 131, 12896–12897 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Sen, T., Tiddy, G. J. T., Casci, J. L. & Anderson, M. W. Synthesis and characterization of hierarchically ordered porous silica materials. Chem. Mater. 16, 2044–2054 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC (EP/G007594/4). A.F.L. was supported by an EPSRC Leadership Fellowship, K.W. by a Royal Society Industry Fellowship, and S.K.B. by a Durham University Addison Wheeler Fellowship and The Leverhulme Trust ECF schemes. L.M.B. acknowledges the EPSRC for a studentship. Electron microscopy access was provided through the Leeds EPSRC Nanoscience and Nanotechnology Research Equipment Facility (LENNF) (EP/K023853/1), the University of Birmingham Nanoscale Physics Laboratory, and DU GJ Russell Microscopy Facility.

Author information

Affiliations

Authors

Contributions

A.F.L., C.M.A.P. and K.W. planned the experiments. C.M.A.P. synthesized all porous materials and performed catalytic testing. L.M.B. and S.K.B. synthesized and characterized the Pd colloids. C.M.A.P., M.A.I. and N.S.H. undertook materials characterization. A.F.L. wrote the manuscript.

Corresponding author

Correspondence to Adam F. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2621 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parlett, C., Isaacs, M., Beaumont, S. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nature Mater 15, 178–182 (2016). https://doi.org/10.1038/nmat4478

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing