Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of nanostructures in nanowires using sequential catalyst reactions

Abstract

Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: TEM images showing Ni silicide formation and incorporation in Si nanowires.
Figure 2: The docking of a silicide particle with its nanowire.
Figure 3: Ni silicide nucleation in Au–Ni nanocrystals deposited on silicon nitride membranes.
Figure 4: Nanocrystal formation in different materials.

References

  1. 1

    Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–91 (1964).

    CAS  Article  Google Scholar 

  2. 2

    Hiruma, K. et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Samuelson, L. Self-forming nanoscale devices. Mater. Today 6, 22–31 (October, 2003).

    CAS  Article  Google Scholar 

  5. 5

    Law, M., Goldberger, J. & Yang, P. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Sci. 34, 83–122 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Schwalbach, E. J. & Voorhees, P. W. Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739–3745 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Tian, B., Xie, P., Kempa, T. J., Bell, D. C. & Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotech. 4, 824–829 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Adhikari, H., Marshall, A. F., Chidsey, C. E. D. & McIntyre, P. C. Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 6, 319–323 (2006).

    Article  Google Scholar 

  9. 9

    Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Burgess, T. et al. Twinning superlattice formation in GaAs nanowires. ACS Nano 7, 8105–8114 (2013).

    CAS  Google Scholar 

  11. 11

    Wen, C.-Y. et al. Formation of compositionally abrupt axial heterojunctions in silicon–germanium nanowires. Science 326, 1247–1250 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Lehmann, S., Jacobsson, D., Deppert, K. & Dick, K. A. High crystal quality wurtzite-zinc blende heterostructures in metal–organic vapor phase epitaxy-grown GaAs nanowires. Nano Res. 5, 470–476 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Caroff, P. et al. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nature Nanotech. 4, 50–55 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Algra, R. E. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Joyce, H. J., Wong-Leung, J., Gao, Q., Tan, H. H. & Jagadish, C. Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Akopian, N., Patriarche, G., Liu, L., Harmand, J.-C. & Zwiller, V. Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–166 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Ross, F. M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 114501 (2010).

    Article  Google Scholar 

  21. 21

    Bartur, M. & Nicolet, M. A. Thermal oxidation of nickel disilicide. Appl. Phys. Lett. 40, 175–177 (1982).

    CAS  Article  Google Scholar 

  22. 22

    Kallesøe, C., Wen, C.-Y., Mølhave, K., Bøggild, P. & Ross, F. M. Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Small 6, 2058–2064 (2010).

    Article  Google Scholar 

  23. 23

    Tang, W. et al. Gold catalyzed nickel disilicide formation: A new solid–liquid–solid phase growth mechanism. Nano Lett. 13, 6009–6015 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Chou, Y.-C., Reuter, M. C., Ross, F. M. & Stach, E. A. The growth of Si nanowires in UHVTEM and Cs-corrected ETEM. Microsc. Microanal. 18(S2), 1084–1085 (2012).

    Article  Google Scholar 

  25. 25

    Detavernier, C. et al. An off-normal fibre-like texture in thin films on single-crystal substrates. Nature 426, 641–645 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Wen, C.-Y. et al. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 107, 025503 (2011).

    Article  Google Scholar 

  27. 27

    Gamalski, A. D., Ducati, C. & Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 115, 4413–4417 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Kim, B. J. et al. Determination of size effects during the phase transition of a nanoscale Au–Si eutectic. Phys. Rev. Lett. 103, 155701 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Hofmann, S. et al. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Mater. 7, 372–375 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Dick, K. A. et al. The morphology of axial and branched nanowire heterostructures. Nano Lett. 7, 1817–1822 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2010).

    Article  Google Scholar 

  34. 34

    Soref, R. et al. Longwave plasmonics on doped silicon and silicides. Opt. Express 16, 6507–6514 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Naik, G. V., Vladimir, M. S. & Alexandra, B. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Mooney, J. M. & Silverman, J. The theory of hot-electron photoemission in Schottky-barrier IR detectors. IEEE Trans. Electron Devices 32, 33–39 (1985).

    Article  Google Scholar 

  37. 37

    Fan, P. et al. An invisible metal–semiconductor photodetector. Nature Photon. 6, 380–385 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Jee, S.-W. et al. A silicon nanowire photodetector using Au plasmonic nanoantennas. Nano Convergence 1, 1–7 (2014).

    Article  Google Scholar 

  39. 39

    Shiyang Zhu, H. S. et al. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p–n junction. Appl. Phys. Lett. 100, 061109 (2012).

    Article  Google Scholar 

  40. 40

    Fathauer, R. W. et al. Infrared photodetectors with tailorable response due to resonant plasmon absorption in epitaxial silicide particles embedded in silicon. Appl. Phys. Lett. 62, 1774–1776 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Mongillo, M., Spathis, P., Katsaros, G. & De Franceschi, S. PtSi clustering in silicon probed by transport spectroscopy. Phys. Rev. X 3, 041025 (2013).

    Google Scholar 

  42. 42

    Park, J.-H. & Sudarshan, T. S. Chemical Vapor Deposition 1st edn (ASM International, 2001).

    Google Scholar 

Download references

Acknowledgements

Supported by the National Science Foundation under Grants No. DMR-0606395 and 0907483 (Y.-C.C.), ERC Grant 279342: InSituNANO (F.P. and S.H.), the National Science Council of Taiwan under Grant No. NSC-101-2112-M-009-021-MY3 (Y.-C.C.), the Center for Interdisciplinary Science under the MOE-ATU project for NCTU (Y.-C.C.) and the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886 (D.Z. and E.A.S.). The authors acknowledge A. Gamalski for assistance with high-resolution imaging, C. Czarnik for assistance with image processing and A. Ellis for technical support.

Author information

Affiliations

Authors

Contributions

F.P. and Y.-C.C. performed experiments and data analysis, M.C.R. developed the UHV-TEM technique, D.Z. and E.A.S. performed high-resolution ETEM experiments, and S.H. and F.M.R. designed the experiments and coordinated the analysis.

Corresponding authors

Correspondence to S. Hofmann or F. M. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 552 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 7011 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 13817 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 4767 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 24864 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 17130 kb)

Supplementary Movie 6

Supplementary Movie 6 (AVI 21091 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panciera, F., Chou, YC., Reuter, M. et al. Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nature Mater 14, 820–825 (2015). https://doi.org/10.1038/nmat4352

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing