Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Engineering interlayer hybridization in van der Waals bilayers

Abstract

In the decade since the introduction of van der Waals (vdW) heterostructures for designer devices, there has been an abundance of studies on the artificial assembly of vdW heterostructures for light–matter interactions, charge and energy transport, and other condensed matter phenomena. The interlayer interactions or hybridization in these systems non-trivially impact their physical characteristics and are sensitive to a complex set of interdependent, externally tunable parameters. There lacks a coherent perspective on how these external stimuli can be used together to engineer materials with desired properties. Here, we systematically address how interlayer hybridization in semiconducting vdW bilayers can be controlled for the realization of different properties in vertically stacked structures. We also discuss new research directions to engineer the interactions beyond bilayers and highlight opportunities that arise when different tuning parameters are simultaneously coupled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tuning electronic hybridization in van der Waals bilayers.
Fig. 2: Properties of semiconducting van der Waals bilayers tunable with electronic hybridization.
Fig. 3: Phonon and thermal transport in van der Waals bilayers.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Klein, D. R. et al. Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol. 18, 331–335 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, J.-X. et al. Spin–orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B Condens. Matter 90, 075434 (2014).

    Article  CAS  Google Scholar 

  11. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  PubMed  Google Scholar 

  12. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus. Nano Lett. 17, 4706–4712 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jobst, J., Kautz, J., Geelen, D., Tromp, R. M. & van der Molen, S. J. Nanoscale measurements of unoccupied band dispersion in few-layer graphene. Nat. Commun. 6, 8926 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Klein, J. et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano Lett. 17, 392–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, J., Lane, C., Zhu, J.-X. & Crooker, S. A. Asymmetric magnetic proximity interactions in MoSe2/CrBr3 van der Waals heterostructures. Nat. Mater. 22, 305–310 (2022).

    Article  PubMed  Google Scholar 

  20. Soriano, D. & Lado, J. L. Exchange-bias controlled correlations in magnetically encapsulated twisted van der Waals dichalcogenides. J. Phys. D Appl. Phys. 53, 474001 (2020).

    Article  CAS  Google Scholar 

  21. Wang, Z., Li, R., Su, C. & Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat https://doi.org/10.1002/smm2.1013 (2020).

  22. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 1–21 (2020).

    Article  Google Scholar 

  23. Huang, Q. et al. The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater.Interfaces 4, 1700171 (2017).

    Article  Google Scholar 

  24. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Article  PubMed  Google Scholar 

  26. Debnath, R. et al. Tuning exciton complexes in twisted bilayer WSe2 at intermediate misorientation. Phys. Rev. B Condens. Matter 106, 125409 (2022).

    Article  CAS  Google Scholar 

  27. Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B Condens. Matter 95, 115429 (2017).

    Article  Google Scholar 

  28. Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    Article  CAS  Google Scholar 

  29. Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article  CAS  Google Scholar 

  30. Halbertal, D. et al. Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun. 12, 242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  36. Van Winkle, M. et al. Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat. Commun. 14, 2989 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Naik, M. H., Kundu, S., Maity, I. & Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: realization of triangular quantum dots. Phys. Rev. B Condens. Matter 102, 075413 (2020).

    Article  CAS  Google Scholar 

  38. Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, H., Carr, S. & Kaxiras, E. Geometric origins of topological insulation in twisted layered semiconductors. Phys. Rev. B Condens. Matter 104, 155415 (2021).

    Article  CAS  Google Scholar 

  40. Linderälv, C., Rahm, J. M. & Erhart, P. High-throughput characterization of transition metal dichalcogenide alloys: thermodynamic stability and electronic band alignment. Chem. Mater. 34, 9364–9372 (2022).

    Article  Google Scholar 

  41. Zhang, K. et al. Spectroscopic signatures of interlayer coupling in Janus MoSSe/MoS2 heterostructures. ACS Nano 15, 14394–14403 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Hofmann, N. et al. Link between interlayer hybridization and ultrafast charge transfer in WS2-graphene heterostructures. 2D Mater. 10, 035025 (2023).

    Article  Google Scholar 

  43. Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    Article  PubMed  Google Scholar 

  44. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  45. Graham, A. J. et al. Ghost anti-crossings caused by interlayer Umklapp hybridization of bands in 2D heterostructures. 2D Mater. 8, 015016 (2020).

    Article  Google Scholar 

  46. Cho, C. et al. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 21, 3956–3964 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Aslan, B., Deng, M., Brongersma, M. L. & Heinz, T. F. Strained bilayer WSe2 with reduced exciton–phonon coupling. Phys. Rev. B Condens. Matter 101, 115305 (2020).

    Article  CAS  Google Scholar 

  49. Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Article  CAS  Google Scholar 

  50. Kim, J.-S. et al. Strain-modulated interlayer charge and energy transfers in MoS2/WS2 heterobilayer. ACS Appl. Mater. Interfaces 14, 46841–46849 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Peña, T., Dey, A., Chowdhury, S. A. & Azizimanesh, A. Moiré engineering in 2D heterostructures with process-induced strain. J. Phys. D Appl. Phys. 122, 143101 (2023).

    Google Scholar 

  52. Gao, X. et al. Heterostrain-enabled dynamically tunable moiré superlattice in twisted bilayer graphene. Sci. Rep. 11, 21402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kögl, M. et al. Moiré straintronics: a universal platform for reconfigurable quantum materials. npj 2D Mater. Appl. 7, 1–9 (2023).

    Article  Google Scholar 

  54. Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 1–6 (2020).

    Article  Google Scholar 

  55. Zhao, W. et al. Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett. 21, 8910–8916 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Pimenta Martins, L. G. et al. Pressure tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons. Nat. Nanotechnol. 18, 1147–1153 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Morales-Durán, N., Potasz, P. & MacDonald, A. H. Magnetism and quantum melting in moire-material Wigner crystals. Phys. Rev. B Condens. Matter 107, 235131 (2023).

    Article  Google Scholar 

  60. Pan, H. & Das Sarma, S. Interaction range and temperature dependence of symmetry breaking in strongly correlated two-dimensional moiré transition metal dichalcogenide bilayers. Phys. Rev. B Condens. Matter 105, 041109 (2022).

    Article  CAS  Google Scholar 

  61. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B Condens. Matter 103, 155142 (2021).

    Article  CAS  Google Scholar 

  63. Molino, L. et al. Influence of atomic relaxations on the moiré flat band wave functions in antiparallel twisted bilayer WS2. Nano Lett. 23, 11778–11784 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 47401 (2021).

    Article  CAS  Google Scholar 

  65. Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rossi, A. et al. Phason-mediated interlayer exciton diffusion in WS2/WSe2 moiré heterostructure. Preprint at https://doi.org/10.48550/arXiv.2301.07750 (2023).

  67. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  CAS  Google Scholar 

  69. Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1–12 (2018).

    Article  Google Scholar 

  70. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Shree, S., Paradisanos, I., Marie, X., Robert, C. & Urbaszek, B. Guide to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 3, 39–54 (2021).

    Article  CAS  Google Scholar 

  73. Luo, R. et al. Probing functional structures, defects, and interfaces of 2D transition metal dichalcogenides by electron microscopy. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202307625 (2023).

  74. Naik, M. H. & Jain, M. Origin of layer dependence in band structures of two-dimensional materials. Phys. Rev. B Condens. Matter 95, 165125 (2017).

    Article  Google Scholar 

  75. Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B Condens. Matter 99, 125424 (2019).

    Article  CAS  Google Scholar 

  76. Merkl, P. et al. Twist-tailoring Coulomb correlations in van der waals homobilayers. Nat. Commun. 11, 2167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Haider, G. et al. Superradiant emission from coherent excitons in van der Waals heterostructures. Adv. Funct. Mater. 31, 2102196 (2021).

    Article  CAS  Google Scholar 

  79. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2-WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shanks, D. N. et al. Interlayer exciton diode and transistor. Nano Lett. 16, 6599–6605 (2022).

    Article  Google Scholar 

  82. Jin, C. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360, 893–896 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Luo, Y. K. et al. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett. 17, 3877–3883 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yoon, Y. et al. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 22, 10140–10146 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Paul Inbaraj, C. R. et al. Modulating charge separation with hexagonal boron nitride mediation in vertical van der waals heterostructures. ACS Appl. Mater. Interfaces 12, 26213–26221 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Hagel, J., Brem, S. & Malic, E. Electrical tuning of moiré excitons in MoSe2 bilayers. 2D Mater. 10, 014013 (2022).

    Article  Google Scholar 

  89. Tagarelli, F. et al. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat. Photon. 17, 615–621 (2023).

    Article  CAS  Google Scholar 

  90. Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Park, H. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 19, 1286–1292 (2023).

    Article  CAS  Google Scholar 

  95. Li, W. et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article  CAS  Google Scholar 

  103. Sood, A. K., Menéndez, J., Cardona, M. & Ploog, K. Interface vibrational modes in GaAs-AlAs superlattices. Phys. Rev. Lett. 54, 2115–2118 (1985).

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, Z. et al. Experimental observation of localized interfacial phonon modes. Nat. Commun. 12, 6901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feng, T., Zhong, Y., Shi, J. & Ruan, X. Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis. Phys. Rev. B Condens. Matter 99, 045301 (2019).

    Article  CAS  Google Scholar 

  106. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sood, A. et al. Engineering thermal transport across layered graphene–MoS2 superlattices. ACS Nano 15, 19503–19512 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, K.-Q. et al. Large-scale mapping of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 33, e2008333 (2021).

    Article  PubMed  Google Scholar 

  110. Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Maity, I., Naik, M. H., Maiti, P. K., Krishnamurthy, H. R. & Jain, M. Phonons in twisted transition-metal dichalcogenide bilayers: ultrasoft phasons and a transition from a superlubric to a pinned phase. Phys. Rev. Res. 2, 013335 (2020).

    Article  CAS  Google Scholar 

  112. Parzefall, P. et al. Moiré phonons in twisted MoSe2–WSe2 heterobilayers and their correlation with interlayer excitons. 2D Mater. 8, 035030 (2021).

    Article  CAS  Google Scholar 

  113. Koshino, M. & Son, Y.-W. Moiré phonons in twisted bilayer graphene. Phys. Rev. B Condens. Matter 100, 075416 (2019).

    Article  CAS  Google Scholar 

  114. Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, X., Peng, R., Sun, Z. & Liu, J. Moiré phonons in magic-angle twisted bilayer graphene. Nano Lett. 22, 7791–7797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mandal, S., Maity, I., Das, A., Jain, M. & Maiti, P. K. Tunable lattice thermal conductivity of twisted bilayer MoS2. Phys. Chem. Chem. Phys. 24, 13860–13868 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Gao, Q. & Khalaf, E. Symmetry origin of lattice vibration modes in twisted multilayer graphene: phasons versus moiré phonons. Phys. Rev. B Condens. Matter 106, 075420 (2022).

    Article  CAS  Google Scholar 

  119. Meneghini, G., Brem, S. & Malic, E. Ultrafast phonon‐driven charge transfer in van der Waals heterostructures. Nat. Sci. https://doi.org/10.1002/ntls.20220014 (2022).

  120. Sood, A. et al. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nat. Nanotechnol. 18, 29–35 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Lu, J. Z., Zhu, Z., Angeli, M., Larson, D. T. & Kaxiras, E. Low-energy moiré phonons in twisted bilayer van der Waals heterostructures. Phys. Rev. B Condens. Matter 106, 144305 (2022).

    Article  CAS  Google Scholar 

  122. Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Nat. Commun. 12, 5644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiao, C. et al. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures. Rep. Prog. Phys. https://doi.org/10.1088/1361-6633/acfe89 (2023).

  124. Wu, X. et al. Recent advances on tuning the interlayer coupling and properties in van Der Waals heterostructures. Small 18, 2105877 (2022).

    Article  CAS  Google Scholar 

  125. Zhu, S., Pochet, P. & Johnson, H. T. Controlling rotation of two-dimensional material flakes. ACS Nano 13, 6925–6931 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Bagchi, S., Johnson, H. T. & Chew, H. B. Strain-controlled dynamic rotation of twisted 2D atomic layers for tunable nanomechanical systems. ACS Appl. Nano Mater. 3, 10878–10884 (2020).

    Article  CAS  Google Scholar 

  127. Huang, L. et al. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 85, 046401 (2022).

    Article  Google Scholar 

  128. Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).

    Article  Google Scholar 

  129. Xin, M. et al. The trilayer exciton emission in WSe2/WS2/MoS2 van der Waals heterostructures. Appl. Phys. Lett. 121, 143101 (2022).

    Article  CAS  Google Scholar 

  130. Chen, D. et al. Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun. 13, 4810 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bai, Y. et al. Evidence for exciton crystals in a 2D semiconductor heterotrilayer. Nano Lett. 24, 11621–11629 (2023).

    Article  Google Scholar 

  132. Cai, X. & Gao, W. Moiré synergy: an emerging playground by coupled moirés. ACS Nano 17, 9673–9680 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Lian, Z. et al. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat. Commun. 14, 4604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, L. et al. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. Nat. Mater. 22, 1485–1491 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Li, W. et al. Quadrupolar–dipolar excitonic transition in a tunnel-coupled van der Waals heterotrilayer. Nat. Mater. 22, 1478–1484 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Slobodkin, Y. et al. Quantum phase transitions of trilayer excitons in atomically thin heterostructures. Phys. Rev. Lett. 125, 255301 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, X. et al. Growth of 2D materials at the wafer scale. Adv. Mater. 34, e2108258 (2022).

    Article  PubMed  Google Scholar 

  138. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Padgaonkar, S., Olding, J. N., Lauhon, L. J., Hersam, M. C. & Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 53, 763–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Obaidulla, S. M., Supina, A., Kamal, S., Khan, Y. & Kralj, M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. Nanoscale Horiz. 9, 44–92 (2023).

    Article  PubMed  Google Scholar 

  145. Barré, E. et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 376, 406–410 (2022).

    Article  PubMed  Google Scholar 

  146. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Steeger, P. et al. Pressure dependence of intra- and interlayer excitons in 2H-MoS bilayers. Nano Lett. 23, 8947–8952 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 1–8 (2021).

    Article  Google Scholar 

  149. Li, Z. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Miao, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun. 12, 1–6 (2021).

    Article  Google Scholar 

  151. Stansbury, C. H. et al. Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv. 7, eabf4387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2016).

    Article  Google Scholar 

  157. Peimyoo, N. et al. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol. 16, 888–893 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Ochoa, H. Moire-pattern fluctuations and electron–phason coupling in twisted bilayer graphene. Phys. Rev. B Condens. Matter 100, 155426 (2019).

    Article  CAS  Google Scholar 

  159. Ochoa, H. & Fernandes, R. M. Degradation of phonons in disordered moiré superlattices. Phys. Rev. Lett. 128, 065901 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.B. was supported by the US Department of Energy (DOE) Office of Science, Basic Energy Sciences (BES) in Quantum Information Science under award DE-SC0022289. M.D. and A.R. were supported by the US DOE Office of Science for support of microelectronics research, under contract number DE-AC02-05CH11231. S.K. was supported by the US DOE BES under Award No. DE-SC0021984. F.H.J. was supported by the US DOE BES Award No. DE-SC0021984, and by the National Science Foundation CAREER award through grant no. DMR-2238328. A.S. acknowledges startup funds from Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussing the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Archana Raja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Deep Jariwala and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barré, E., Dandu, M., Kundu, S. et al. Engineering interlayer hybridization in van der Waals bilayers. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00666-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00666-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing