Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kondo conductance in an atomic nanocontact from first principles

Abstract

The electrical conductance of atomic metal contacts represents a powerful tool for detecting nanomagnetism. Conductance reflects magnetism through anomalies at zero bias1,2,3,4,5,6,7—generally with Fano line shapes—owing to the Kondo screening of the magnetic impurity bridging the contact8,9. A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, at present, zero-bias conductance anomalies are not calculable from atomistic scratch. Here, we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanowire. A Fano-like conductance line shape is obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, and uncover the possibility of opposite antiferromagnetic and ferromagnetic Kondo screening—the latter exhibiting a totally different and unexplored zero-bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding and exploration of this larger variety of Kondo phenomena at more general magnetic nanocontacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structure of a Au wire with a Ni impurity in bridge and substitutional geometries.
Figure 2: Conductance properties in the bridge geometry.
Figure 3: Conductance versus source–drain voltage of regular and of ferro Kondo in the two geometries.

Similar content being viewed by others

References

  1. Knorr, N., Schneider, M. A., Diekhöner, L., Wahl, P. & Kern, K. Kondo effect of single Co adatoms on Cu surfaces. Phys. Rev. Lett. 88, 096804 (2002).

    Article  Google Scholar 

  2. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  Google Scholar 

  3. Neel, N. et al. Conductance and Kondo effect in a controlled single-atom contact. Phys. Rev. Lett. 98, 016801 (2007).

    Article  CAS  Google Scholar 

  4. Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nature Phys. 4, 847–850 (2008).

    Article  CAS  Google Scholar 

  5. Vitali, L. et al. Kondo effect in single atom contacts: The importance of the atomic geometry. Phys. Rev. Lett. 101, 216802 (2008).

    Article  Google Scholar 

  6. Ternes, M., Heinrich, A. & Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys. Condens. Matter 21, 053001 (2009).

    Article  Google Scholar 

  7. Reyes-Calvo, M. et al. The Kondo effect in ferromagnetic atomic contacts. Nature 458, 1150–1153 (2009).

    Article  Google Scholar 

  8. Hewson, A. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  9. Újsághy, O., Kroha, J., Szunyogh, L. & Zawadowski, A. Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85, 2557–2560 (2000).

    Article  Google Scholar 

  10. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schon, G.) (Kluwer, 1997).

    Book  Google Scholar 

  11. Joon Choi, H. & Ihm, J. Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).

    Article  Google Scholar 

  12. Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–451 (2008).

    Article  CAS  Google Scholar 

  13. Glazman, L. I. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 (1988).

    Google Scholar 

  14. Ng, T. K. & Lee, P. A. On-site Coulomb repulsion and resonant tunneling. Phys. Rev. Lett. 61, 1768–1771 (1988).

    Article  CAS  Google Scholar 

  15. Meir, Y. & Wingreen, N. S. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992).

    Article  CAS  Google Scholar 

  16. Bagrets, A., Papanikolaou, N. & Mertig, I. Conduction eigenchannels of atomic-sized contacts: Ab initio KKR Green’s function formalism. Phys. Rev. B 75, 235448 (2007).

    Article  Google Scholar 

  17. Miura, Y., Mazzarello, R., Dal Corso, A., Smogunov, A. & Tosatti, E. Monatomic Au wire with a magnetic Ni impurity: Electronic structure and ballistic conductance. Phys. Rev. B 78, 205412 (2008).

    Article  Google Scholar 

  18. Gunnarsson, O., Andersen, O. K., Jepsen, O. & Zaanen, J. Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. Phys. Rev. B 39, 1708–1722 (1989).

    Article  CAS  Google Scholar 

  19. Costi, T. A. et al. Kondo decoherence: Finding the right spin model for iron impurities in gold and silver. Phys. Rev. Lett. 102, 056802 (2009).

    Article  CAS  Google Scholar 

  20. Koller, W., Hewson, A. C. & Meyer, D. Singular dynamics of underscreened magnetic impurity models. Phys. Rev. B 72, 045117 (2005).

    Article  Google Scholar 

  21. Nozières, P. & Blandin, A. Kondo effect in real metals. J. Phys. (Paris) 41, 193–211 (1980).

    Article  Google Scholar 

  22. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  23. Giannozzi, P. et al. <http://www.quantum-espresso.org>.

  24. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  25. Smogunov, A., Dal Corso, A. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).

    Article  Google Scholar 

  26. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1997).

    Google Scholar 

  27. Costi, T. A., Hewson, A. C. & Zlatic, V. Transport coefficient of the Anderson model via the numerical renormalization group. J. Phys. Condens. Matter 6, 2519–2558 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Basko and C. Untiedt for very useful discussions. The work was supported by the Italian Ministry of University and Research, through a PRIN-COFIN award, and by INFM through ‘Iniziativa Trasversale Calcolo Parallelo’. The environment provided by the independent ESF project CNR-FANAS-AFRI was also useful. P.L. acknowledges financial support from EC STREP project MIDAS ‘Macroscopic Interference Devices for Atomic and Solid State Physics’ and CNR-INFM within ESF Eurocores Programme FoNE-Spintra.

Author information

Authors and Affiliations

Authors

Contributions

P.L., M.F. and E.T. conceived and elaborated the Kondo aspects, including NRG; R.M. and A.S. worked out the DFT part, from which A.S. extracted the phase shifts. E.T. wrote the paper, with help from all co-authors.

Corresponding author

Correspondence to Erio Tosatti.

Supplementary information

Supplementary Information

Supplementary Information (PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucignano, P., Mazzarello, R., Smogunov, A. et al. Kondo conductance in an atomic nanocontact from first principles. Nature Mater 8, 563–567 (2009). https://doi.org/10.1038/nmat2476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing