Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

Abstract

The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels1,2,3. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors4. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components1. The reported strategies combine sol–gel chemistry, self-assembly routes using templates that tune the material’s architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation1,5,6,7,8,9,10,11,12,13,14,15. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General route of synthesis of ordered multimodal materials by using a template and polymeric environment.
Figure 3: SEM images.
Figure 2: XRD patterns of representative mesostructured hybrid materials.
Figure 4: Designer morphologies.

Similar content being viewed by others

References

  1. Sanchez, C., Arribart, H. & Giraud-Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater. 4, 277–288 (2005).

    Article  Google Scholar 

  2. Mann, S. in Biomimetic Materials Chemistry (ed. Mann, S.) 1–40 (Wiley-VCH, Weinheim, 1997).

    Google Scholar 

  3. Tirrell, D. A. (coord.) Hierarchical Structures in Biology as a Guide for New Materials Technology 1–130 (National Material Advisory Board, The National Academic Press, Washington, District of Columbia, 1994).

    Google Scholar 

  4. Gómez-Romero, P. & Sanchez, C. (eds) Functional Hybrid Materials (Wiley-VCH, Weinheim, 2003).

  5. Göltner, C. G. & Antonietti, M. Mesoporous materials by templating of liquid crystalline phase. Adv. Mater. 9, 431–436 (1997).

    Article  Google Scholar 

  6. Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    Article  Google Scholar 

  7. Li, M. & Mann, S. DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. J. Mater. Chem. 14, 2260–2263 (2004).

    Article  Google Scholar 

  8. Ozin, G. A. Panoscopic materials: synthesis over ‘all’ length scales. Chem. Commun. 6, 419–432 (2000).

    Article  Google Scholar 

  9. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  Google Scholar 

  10. Bouchara, A., Soler Illia, G. J. A. A., Chane-Ching, J. Y. & Sanchez, C. Nanotectonic approach of the texturation of Ce202 based nanomaterials. Chem. Commun. 1234–1235 (2002).

  11. Llusar, M., Monros, G., Roux, C., Pozzo, L. J. & Sanchez, C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators. J. Mater. Chem. 13, 2505–2514 (2003).

    Article  Google Scholar 

  12. Van Bommel, K. J. C., Friggeri, A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Edn 42, 980–999 (2003).

    Article  Google Scholar 

  13. Soler-illia, G. J. D., Sanchez, C., Lebeau, B. & Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002).

    Article  Google Scholar 

  14. Ozin, G. A. Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings. Science 302, 266–269 (2003).

    Article  Google Scholar 

  15. Brinker, C. J. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000).

    Article  Google Scholar 

  16. Vallé, K., Belleville, P. & Sanchez, C. French patent FR 0300724 (2003).

  17. Soler-illia, G. J. D., Crepaldi, E. L., Grosso, D. & Sanchez, C. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 8, 109–126 (2003).

    Article  Google Scholar 

  18. Stucky, G. D. et al. General predictive synthesis of cubic, hexagonal and lamellar silica and titania mesotructured thin films. Chem. Mater. 14, 3284–3294 (2002).

    Article  Google Scholar 

  19. Antonietti, M. & Ozin, G. A. Promise and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10, 29–41 (2004).

    Article  Google Scholar 

  20. Caruso, R. A. & Antonietti, M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Adv. Funct. Mater. 12, 307–312 (2002).

    Article  Google Scholar 

  21. Forster, S. & Planteberg, T. Functional structural hierarchies from self-organizing polymers. Angew. Chem. Int. Edn 41, 688–714 (2002).

    Article  Google Scholar 

  22. Ji, X. L. et al. Mesoporous silica-reinforced polymer nanocomposite. Chem. Mater. 15, 3656–3662 (2003).

    Article  Google Scholar 

  23. Suzuki, K., Ikari, K. & Imai, H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. J. Mater. Chem. 13, 1812–1816 (2003).

    Article  Google Scholar 

  24. Zhou, Y. & Antonietti, M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chem. Commun. 20, 2564–2565 (2003).

    Article  Google Scholar 

  25. Smatt, J. H., Schunk, S. & Linden, M. Versatile double-templating synthesis route silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354–2361 (2003).

    Article  Google Scholar 

  26. Stucky, G. D. et al. Hierarchically ordered oxide. Science 282, 2244–2246 (1998).

    Article  Google Scholar 

  27. Yang, S. M., Coombs, N. & Ozin, A. Micromolding in inverted polymer opal (MIPO): synthesis of hexagonal mesoporous silica opals. Adv. Mater. 12, 1940–1944 (2000).

    Article  Google Scholar 

  28. Provis, J. L. et al. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing result. Review 17, 3075–3085 (2005).

    Google Scholar 

  29. Teramae, N. et al. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nature Mater. 3, 337–341 (2004).

    Article  Google Scholar 

  30. Barboux, P. et al. Enhanced connectivity in hybrid polymers. Solid State Ion. 145, 141–147 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Guillet for XRD analysis, V. Frotte for porosity analysis and E. Bruneton and E. Estrade for electronic microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Sanchez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2 (PDF 1598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallé, K., Belleville, P., Pereira, F. et al. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nature Mater 5, 107–111 (2006). https://doi.org/10.1038/nmat1570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing