Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates

A Corrigendum to this article was published on 01 January 2004

Abstract

Recent studies have shown that cells from the bone marrow can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved have remained unknown, and the validity of the observation has been questioned. Here, we use transplantation of single CD45+ hematopoietic stem cells (HSCs) to demonstrate that the entire circulating myogenic activity in bone marrow is derived from HSCs and their hematopoietic progeny. We also show that ongoing muscle regeneration and inflammatory cell infiltration are required for HSC-derived contribution, which does not occur through a myogenic stem cell intermediate. Using a lineage tracing strategy, we show that myofibers are derived from mature myeloid cells in response to injury. Our results indicate that circulating myeloid cells, in response to inflammatory cues, migrate to regenerating skeletal muscle and stochastically incorporate into mature myofibers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clonal analysis of HSC myogenic potential.
Figure 2: Muscle contribution after transplantation of single HSCs.
Figure 3: Myogenic engraftment by hematopoietic myeloid cells.
Figure 4: Failure of bone marrow cells to generate mononuclear myogenic cells.
Figure 5: Model for the mechanism of bone marrow–derived myogenesis.

Similar content being viewed by others

References

  1. Clarke, D.L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  Google Scholar 

  2. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  Google Scholar 

  3. Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).

    Article  CAS  Google Scholar 

  4. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  5. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  Google Scholar 

  6. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234 (2000).

    Article  CAS  Google Scholar 

  7. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. & McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  Google Scholar 

  8. Petersen, B.E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  Google Scholar 

  9. Goodell, M.A. Stem cells: is there a future in plastics? Curr. Opin. Cell Biol. 13, 662–665 (2001).

    Article  CAS  Google Scholar 

  10. Morshead, C.M., Benveniste, P., Iscove, N.N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273 (2002).

    Article  CAS  Google Scholar 

  11. Castro, R.F. et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297, 1299 (2002).

    Article  CAS  Google Scholar 

  12. McKinney-Freeman, S.L. et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Natl. Acad. Sci. USA 99, 1341–1346 (2002).

    Article  CAS  Google Scholar 

  13. Vassilopoulos, G., Wang, P.R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  Google Scholar 

  14. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  Google Scholar 

  15. Fukada, S. et al. Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J. Cell. Sci. 115, 1285–1293 (2002).

    CAS  PubMed  Google Scholar 

  16. LaBarge, M.A. & Blau, H.M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601 (2002).

    Article  CAS  Google Scholar 

  17. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  Google Scholar 

  18. Corti, S. et al. A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp. Cell. Res. 277, 74–85 (2002).

    Article  CAS  Google Scholar 

  19. Goodell, M.A. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337–1345 (1997).

    Article  CAS  Google Scholar 

  20. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  21. Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  Google Scholar 

  22. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  Google Scholar 

  23. Goodell, M.A. Stem cell identification and sorting using the Hoechst 33342 Side Population (SP). in Current Protocols in Cytometry vol. 2 (eds. Robinson, J.P. et al.) 9.18.1–9.18.11 (Wiley, New York, 2002).

    Google Scholar 

  24. Kelly, R., Alonso, S., Tajbakhsh, S., Cossu, G. & Buckingham, M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol. 129, 383–396 (1995).

    Article  CAS  Google Scholar 

  25. Ralston, E. & Hall, Z.W. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myotubes. Science 244, 1066–1069 (1989).

    Article  CAS  Google Scholar 

  26. Wakitani, S., Saito, T. & Caplan, A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426 (1995).

    Article  CAS  Google Scholar 

  27. Jorgensen, C., Djouad, F., Apparailly, F. & Noel, D. Engineering mesenchymal stem cells for immunotherapy. Gene Ther. 10, 928–931 (2003).

    Article  CAS  Google Scholar 

  28. De la Porte, S., Morin, S. & Koenig, J. Characteristics of skeletal muscle in mdx mutant mice. Int. Rev. Cytol. 191, 99–148 (1999).

    Article  CAS  Google Scholar 

  29. Milner, D.J., Weitzer, G., Tran, D., Bradley, A. & Capetanaki, Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134, 1255–1270 (1996).

    Article  CAS  Google Scholar 

  30. Ferrari, G., Stornaiuolo, A. & Mavilio, F. Failure to correct murine muscular dystrophy. Nature 411, 1014–1015 (2001).

    Article  CAS  Google Scholar 

  31. Orimo, S., Hiyamuta, E., Arahata, K. & Sugita, H. Analysis of inflammatory cells and complement C3 in bupivacaine-induced myonecrosis. Muscle Nerve 14, 515–520 (1991).

    Article  CAS  Google Scholar 

  32. Parrish, E.P. et al. Targeting widespread sites of damage in dystrophic muscle: engrafted macrophages as potential shuttles. Gene Ther. 3, 13–20 (1996).

    CAS  PubMed  Google Scholar 

  33. Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  34. Cross, M., Mangelsdorf, I., Wedel, A. & Renkawitz, R. Mouse lysozyme M gene: isolation, characterization, and expression studies. Proc. Natl. Acad. Sci. USA 85, 6232–6236 (1988).

    Article  CAS  Google Scholar 

  35. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  36. Schultz, E. & McCormick, K.M. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123, 213–257 (1994).

    Article  CAS  Google Scholar 

  37. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA β geo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  Google Scholar 

  38. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  39. Wakeford, S., Watt, D.J. & Partridge, T.A. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14, 42–50 (1991).

    Article  CAS  Google Scholar 

  40. Quinlan, J.G. et al. Radiation inhibition of mdx mouse muscle regeneration: dose and age factors. Muscle Nerve 18, 201–206 (1995).

    Article  CAS  Google Scholar 

  41. Polesskaya, A., Seale, P. & Rudnicki, M.A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).

    Article  CAS  Google Scholar 

  42. Kawada, H. & Ogawa, M. Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98, 2008–2013 (2001).

    Article  CAS  Google Scholar 

  43. McKinney-Freeman, S.L. et al. Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Exp. Hematol. 31, 806–814 (2003).

    Article  CAS  Google Scholar 

  44. Khurana, T.S. & Davies, K.E. Pharmacological strategies for muscular dystrophy. Nat. Rev. Drug Discov. 2, 379–390 (2003).

    Article  CAS  Google Scholar 

  45. De Luca, A., Pierno, S., Liantonio, A. & Conte Camerino, D. Pre-clinical trials in Duchenne dystrophy: what animal models can tell us about potential drug effectiveness. Neuromuscul. Disord. 12 (suppl. 1), S142–S146 (2002).

    Article  Google Scholar 

  46. Wong, B.L. & Christopher, C. Corticosteroids in Duchenne muscular dystrophy: a reappraisal. J. Child Neurol. 17, 183–190 (2002).

    Article  Google Scholar 

  47. Lescaudron, L. et al. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul. Disord. 9, 72–80 (1999).

    Article  CAS  Google Scholar 

  48. Vignery, A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int. J. Exp. Pathol. 81, 291–304 (2000).

    Article  CAS  Google Scholar 

  49. Horsley, V., Jansen, K.M., Mills, S.T. & Pavlath, G.K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    Article  CAS  Google Scholar 

  50. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature advance online publication, 12 October 2003 (doi:10.1038/nature02069).

  51. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  Google Scholar 

  52. Lu, Q.L. & Partridge, T.A. A new blocking method for application of murine monoclonal antibody to mouse tissue sections. J. Histochem. Cytochem. 46, 977–984 (1998).

    Article  CAS  Google Scholar 

  53. Rando, T.A. & Blau, H.M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125, 1275–1287 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.D.C. was a fellow of the American Liver Foundation. M.A.G. is a Scholar of the Leukemia and Lymphoma Society. K.A.J. is a fellow of the Leukemia and Lymphoma Society and of the Muscular Dystrophy Association. This work was supported by grants to M.A.G. from the Muscular Dystrophy Association and the National Institutes of Health. We thank M. Cubbage for flow cytometry assistance, F. Mavilio (HSR-TIGET, Italy) for MLacZ mice, L. Pao (Harvard) for LysM-Cre mice, and D. Burton for animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A Goodell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, F., Green, R., Capetenaki, Y. et al. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9, 1520–1527 (2003). https://doi.org/10.1038/nm963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing