Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoimmune islet destruction in spontaneous type 1 diabetes is not β-cell exclusive

Abstract

Pancreatic islets of Langerhans are enveloped by peri-islet Schwann cells (pSC), which express glial fibrillary acidic protein (GFAP) and S100β. pSC-autoreactive T- and B-cell responses arise in 3- to 4-week-old diabetes-prone non-obese diabetic (NOD) mice, followed by progressive pSC destruction before detectable β-cell death. Humans with probable prediabetes generate similar autoreactivities, and autoantibodies in islet-cell autoantibody (lCA) –positive sera co-localize to pSC. Moreover, GFAP-specific NOD T-cell lines transferred pathogenic peri-insulitis to NOD/severe combined immunodeficient (NOD/SCID) mice, and immunotherapy with GFAP or S100β prevented diabetes. pSC survived in rat insulin promoter Iymphocytic choriomeningitis virus (rip–LCMV) glycoprotein/CD8+ T-cell receptorgp double-transgenic mice with virus-induced diabetes, suggesting that pSC death is not an obligate consequence of local inflammation and β-cell destruction. However, pSC were deleted in spontaneously diabetic NOD mice carrying the CD8+/8.3 T-cell receptor transgene, a T cell receptor commonly expressed in earliest islet infiltrates. Autoimmune targeting of pancreatic nervous system tissue elements seems to be an integral, early part of natural type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFAP+ pSC are the first target tissue in NOD prediabetes.
Figure 2: B- and T-cell autoimmunity to pSC constituents in NOD females.
Figure 3: pSC autoimmunity in human T1D.
Figure 4: Autoimmunity to pSC antigens induces insulitis and modifies adoptively transferred diabetes development.
Figure 5: Differential effects of two transgenic TCR diabetes models.

Similar content being viewed by others

References

  1. Serreze, D.V. & Leiter, E.H. Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr. Opin. Immunol. 6, 900–906 (1994).

    Article  CAS  Google Scholar 

  2. Wicker, L.S., Todd, J.A. & Peterson, L.B. Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13, 179–200 (1995).

    Article  CAS  Google Scholar 

  3. Karges, W., Ilonen, J., Robinson, B.H. & Dosch, H.-M. Self and non-self antigen in diabetic autoimmunity: Molecules and mechanisms. Mol. Aspects Med. 16, 79–213 (1995).

    Article  CAS  Google Scholar 

  4. Shimada, A., Charlton, B., Taylor, E.C. & Fathman, C.G. β-cell destruction may be a late consequence of the autoimmune process in nonobese diabetic mice. Diabetes 45, 1063–1067 (1996).

    Article  CAS  Google Scholar 

  5. Atkinson, M.A. & Leiter, E.H. The NOD mouse model of type 1 diabetes: As good as it gets? Nature Med. 5, 601–604 (1999).

    Article  CAS  Google Scholar 

  6. Tisch, R., Wang, B. & Serreze, D.V. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 163, 1178–1187 (1999).

    CAS  Google Scholar 

  7. Winer, S. et al. Peptide dose, MHC-affinity and target self-antigen expression are critical for effective immunotherapy of NOD mouse prediabetes. J. Immunol. 165, 4086–4094 (2000).

    Article  CAS  Google Scholar 

  8. Andre, I. et al. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc. Natl. Acad. Sci. USA 93, 2260–2263 (1996).

    Article  CAS  Google Scholar 

  9. Kim, J. et al. Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes 42, 1799–1808 (1993).

    Article  CAS  Google Scholar 

  10. Lu, J. et al. Identification of a second transmembrane protein tyrosine phosphatase, IA-2β, as an autoantigen in insulin-dependent diabetes mellitus: Precursor of the 37-kDa tryptic fragment. Proc. Natl. Acad. Sci. USA 93, 2307–2311 (1996).

    Article  CAS  Google Scholar 

  11. Karges, W., Pietropaolo, M., Ackerley, C. & Dosch, H.M. Gene expression of islet cell antigen p69 (ICAp69) in man, mouse and rat. Diabetes 45, 513–521 (1996).

    Article  CAS  Google Scholar 

  12. Marrosu, M.G. et al. Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: A cohort study. Lancet 359, 1461–1465 (2002).

    Article  Google Scholar 

  13. Winer, S. et al. Type I diabetes and MS patients target islet plus CNS-autoantigens, non-immunized NOD mice can develop autoimmune encephalitis. J. Immunol. 166, 2831–2841 (2001).

    Article  CAS  Google Scholar 

  14. Salomon, B. et al. Development of spontaneous autoimmune peripheral polyneuropathy in b7-2-deficient nod mice. J. Exp. Med. 194, 677–684 (2001).

    Article  CAS  Google Scholar 

  15. Donev, S.R. Ultrastructural evidence for the presence of a glial sheath investing the islets of Langerhans in the pancreas of mammals. Cell Tissue Res. 237, 343–348 (1984).

    Article  CAS  Google Scholar 

  16. Smith, P.H. Structural modification of Schwann cells in the pancreatic islets of the dog. Am. J. Anat. 144, 513–517 (1975).

    Article  CAS  Google Scholar 

  17. Sunami, E. et al. Morphological characteristics of Schwann cells in the islets of Langerhans of the murine pancreas. Arch. Histol. Cytol. 64, 191–201 (2001).

    Article  CAS  Google Scholar 

  18. Teitelman, G., Guz, Y., Ivkovic, S. & Ehrlich, M. Islet injury induces neurotrophin expression in pancreatic cells and reactive gliosis of peri-islet Schwann cells. J. Neurobiol. 34, 304–318 (1998).

    Article  CAS  Google Scholar 

  19. Winer, S. et al. ICA69null NOD mice develop diabetes but resist disease acceleration by cyclophosphamide. J. Immunol. 168, 475–482 (2002).

    Article  CAS  Google Scholar 

  20. Saravia-Fernandez, F. et al. Localization of γ-aminobutyric acid and glutamic acid decarboxylase in the pancreas of the nonobese diabetic mouse. Endocrinology 137, 3497–3506 (1996).

    Article  CAS  Google Scholar 

  21. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75 (1993).

    Article  CAS  Google Scholar 

  22. Kaufman, D.L. et al. Spontaneous loss of T cell tolerance to glutamic acid decarboxylase in murine insulin dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  Google Scholar 

  23. Merchant, M. & Weinberger, S.R. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21, 1164–1177 (2000).

    Article  CAS  Google Scholar 

  24. Lipton, R.B. et al. Autoimmunity and genetics contribute to the risk of insulin-dependent diabetes mellitus in families: Islet cell antibodies and HLA DQ heterodimers. Am. J. Epidemiol. 136, 503–512 (1992).

    Article  CAS  Google Scholar 

  25. Dosch, H.-M., Cheung, R.K., Karges, W., Pietropaolo, M. & Becker, D.J. Persistent T cell anergy in human type 1 diabetes. J. Immunol. 163, 6933–6940 (1999).

    CAS  PubMed  Google Scholar 

  26. Wicker, L.S., Miller, B.J. & Mullen, Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes 35, 855–860 (1986).

    Article  CAS  Google Scholar 

  27. DiLorenzo, T.P. et al. Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor α chain gene rearrangement. Proc. Natl. Acad. Sci. USA 95, 12538–12543 (1998).

    Article  CAS  Google Scholar 

  28. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  29. Serreze, D.V. et al. Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J. Immunol. 166, 1352–1359 (2001).

    Article  CAS  Google Scholar 

  30. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  31. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  32. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  Google Scholar 

  33. Santamaria, P. et al. β-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor α-chain CDR3 sequences. J. Immunol. 154, 2494–2503 (1995).

    CAS  Google Scholar 

  34. Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-α chains. J. Immunol. 157, 4726–4735 (1996).

    CAS  PubMed  Google Scholar 

  35. Spierings, E. et al. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4(+) Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J. Immunol. 166, 5883–5888 (2001).

    Article  CAS  Google Scholar 

  36. Wekerle, H., Schwab, M., Linington, C. & Meyermann, R. Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur. J. Immunol. 16, 1551–1557 (1986).

    Article  CAS  Google Scholar 

  37. Wong, F.S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Med. 5, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  38. Brooks-Worrell, B., Gersuk, V.H., Greenbaum, C. & Palmer, J.P. Intermolecular antigen spreading during the preclinical period of human type I diabetes. J. Immunol. 166, 5265–5370 (2001).

    Article  CAS  Google Scholar 

  39. Mathis, D., Vence, L. & Benoist, C. β-Cell death during progression to diabetes. Nature 414, 792–798 (2001).

    Article  CAS  Google Scholar 

  40. Delaney, C.L., Brenner, M. & Messing, A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J. Neurosci. 16, 6908–6918 (1996).

    Article  CAS  Google Scholar 

  41. Bush, T.G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  Google Scholar 

  42. Leitenberg, D. & Bottomly, K. Regulation of naive T cell differentiation by varying the potency of TCR signal transduction. Semin. Immunol. 11, 283–292 (1999).

    Article  CAS  Google Scholar 

  43. Hahn von Dorsche, H., Schafer, H. & Titlbach, M. Histophysiology of the obesity-diabetes syndrome in sand rats. Adv. Anat. Embryol. Cell Biol. 130, 1–95 (1994).

    Article  CAS  Google Scholar 

  44. Austen, B.M., Frears, E.R. & Davies, H. The use of SELDI proteinchip arrays to monitor production of Alzheimer's βamyloid in transfected cells. J. Pept. Sci. 6, 459–469 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Trucco and R. Boti for provision of purified human islets from the Pittsburgh JDRF Diabetes Center; D. Homeard for transmission electron microscopy; D. Midha, C. McKerlie and D. Winer for helpful discussions; and A. Darnley and K. Reilly for collection of human blood samples and ICA assays. This work was supported by grants from the Canadian Institutes of Health Research, the Juvenile Diabetes Research Foundation, the National Institutes of Health and the Renziehausen Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H -Michael Dosch.

Ethics declarations

Competing interests

G.J. and X.L., of SynX Pharma Inc., Toronto, Ontario, employed proteomics technology to make the original observation of GFAP autoantibodies in sera from humans and NOD mice with probable prediabetes. The company filed for patent protection and provided some of the funding from the present study in the form of a peer-reviewed, joint University-Industry grant from the Canadian Institutes of Health Research (CHIR). X.L. has since moved to become a Professor of Biochemistry and principal of the Biotech Center for Applied Research and Training at Seneca College, Toronto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winer, S., Tsui, H., Lau, A. et al. Autoimmune islet destruction in spontaneous type 1 diabetes is not β-cell exclusive. Nat Med 9, 198–205 (2003). https://doi.org/10.1038/nm818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing