Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase CK2 links extracellular growth factor signaling with the control of p27Kip1 stability in the heart

A Corrigendum to this article was published on 01 May 2008

This article has been updated

Abstract

p27Kip1 (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E–Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-α′–dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-α′. Thus, the p27–CK2-α′ interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-α′ is crucial for agonist- and stress-induced cardiac hypertrophic growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cytoplasmic complex of CK2-α′ and p27 exists in cardiomyocytes.
Figure 2: CK2-α′ phosphorylates p27 on Ser83 and Thr187.
Figure 3: CK2-α′-mediated p27 degradation is essential for cardiomyocyte hypertrophy.
Figure 4: Mice with targeted homozygous deletion of the p27 gene (p27 KO) develop age-dependent cardiac hypertrophy.
Figure 5: CK2-α′ is important for Ang II action in vivo: protein transduction of KD CK2-α′ or p27ΔPi abrogates cardiac hypertrophy in response to Ang II treatment in WT mice, and transduction of recombinant active CK2-α′ evokes cardiac hypertrophy in the absence of Ang II.
Figure 6: Constitutively inactive KD CK2-α′ does not inhibit cardiac hypertrophy in p27 KO mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 21 March 2008

    In the version of this article initally published, one author, Junfeng An, was missing from the author list and the Author Contributions section. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Berthet, C. & Kaldis, P. Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26, 4469–4477 (2007).

    Article  CAS  Google Scholar 

  2. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J.M. & Massagué, J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E–dependent kinase by TGF-β. Science 260, 536–539 (1993).

    Article  CAS  Google Scholar 

  3. Hengst, L., Dulic, V., Slingerland, J.M., Lees, E. & Reed, S.I. A cell cycle–regulated inhibitor of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 5291–5295 (1994).

    Article  CAS  Google Scholar 

  4. Kato, J.Y., Matsuoka, M., Polyak, K., Massagué, J. & Sherr, C.J. Cyclic AMP–induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79, 487–496 (1994).

    Article  CAS  Google Scholar 

  5. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  Google Scholar 

  6. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin–CDK protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  Google Scholar 

  7. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).

    Article  CAS  Google Scholar 

  8. Hengst, L. & Reed, S.I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  CAS  Google Scholar 

  9. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent- kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160–165 (1999).

    Article  CAS  Google Scholar 

  10. Hara, T. et al. Degradation of p27(Kip1) at the G0-G1 transition mediated by a Skp2-independent ubiquitination pathway. J. Biol. Chem. 276, 48937–48943 (2001).

    Article  CAS  Google Scholar 

  11. Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nat. Cell Biol. 6, 1229–1235 (2004).

    Article  CAS  Google Scholar 

  12. Kotoshiba, S., Kamura, T., Hara, T., Ishida, N. & Nakayama, K.I. Molecular dissection of the interaction between p27 and KPC, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J. Biol. Chem. 280, 17694–17700 (2005).

    Article  CAS  Google Scholar 

  13. Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem. 277, 14355–14358 (2002).

    Article  CAS  Google Scholar 

  14. Kotake, Y., Nakayama, K., Ishida, N. & Nakayama, K.I. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J. Biol. Chem. 280, 1095–1102 (2005).

    Article  CAS  Google Scholar 

  15. Besson, A. et al. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev. 20, 47–64 (2006).

    Article  CAS  Google Scholar 

  16. Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001).

    Article  CAS  Google Scholar 

  17. LaBaer, J. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847–862 (1997).

    Article  CAS  Google Scholar 

  18. Sheaff, R.J. et al. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).

    Article  CAS  Google Scholar 

  19. Carrano, A.C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199 (1999).

    Article  CAS  Google Scholar 

  20. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).

    Article  CAS  Google Scholar 

  21. Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell 6, 661–672 (2004).

    Article  CAS  Google Scholar 

  22. Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nat. Cell Biol. 7, 831–836 (2005).

    Article  CAS  Google Scholar 

  23. Malek, N.P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413, 323–327 (2001).

    Article  CAS  Google Scholar 

  24. Fero, M.L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  Google Scholar 

  25. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721–732 (1996).

    Article  CAS  Google Scholar 

  26. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  Google Scholar 

  27. Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med. 3, 231–234 (1997).

    Article  CAS  Google Scholar 

  28. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. 8, 1153–1160 (2002).

    Article  CAS  Google Scholar 

  29. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat. Med. 8, 1145–1152 (2002).

    Article  CAS  Google Scholar 

  30. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med. 8, 1136–1144 (2002).

    Article  CAS  Google Scholar 

  31. Pasumarthi, K.B.S. & Field, L.F. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

    Article  CAS  Google Scholar 

  32. Burton, P.B., Yacoub, M.H. & Barton, P.J. Cyclin-dependent kinase inhibitor expression in human heart failure. A comparison with fetal development. Eur. Heart J. 20, 604–611 (1999).

    Article  CAS  Google Scholar 

  33. Poolman, R.A., Li, J.M., Durand, B. & Brooks, G. Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27Kip1 knockout mice. Circ. Res. 85, 117–127 (1999).

    Article  CAS  Google Scholar 

  34. Sadoshima, J., Xu, Y., Slayter, H.S. & Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984 (1993).

    Article  CAS  Google Scholar 

  35. Chien, K.R. & Olson, E.N. Converging pathways and principles in heart development and disease. Cell 110, 153–162 (2002).

    Article  CAS  Google Scholar 

  36. Litchfield, D.W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1–15 (2003).

    Article  CAS  Google Scholar 

  37. Meggio, F. & Pinna, L.A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003).

    Article  CAS  Google Scholar 

  38. Luo, Y., Hurwitz, J. & Massagué, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159–161 (1995).

    Article  CAS  Google Scholar 

  39. Grimmler, M. et al. Cdk inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269–280 (2007).

    Article  CAS  Google Scholar 

  40. Chu, I. et al. p27 phosphorylation by Src regulates inhibition of cyclin E–Cdk2. Cell 128, 281–294 (2007).

    Article  CAS  Google Scholar 

  41. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  Google Scholar 

  42. Hunter, J.J. & Chien, K.R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  Google Scholar 

  43. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    Article  CAS  Google Scholar 

  44. Satoh, M. et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 103, 7432–7437 (2006).

    Article  CAS  Google Scholar 

  45. Li, P.F. et al. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol. Cell 10, 247–258 (2002).

    Article  CAS  Google Scholar 

  46. Donath, S. et al. Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113, 1203–1212 (2006).

    Article  CAS  Google Scholar 

  47. Seldin, D.C. & Leder, P. Casein kinase IIα transgene–induced murine lymphoma: relation to theileriosis in cattle. Science 267, 894–897 (1995).

    Article  CAS  Google Scholar 

  48. Xu, X., Toselli, P.A., Russell, L.D. & Seldin, D.C. Globozoospermia in mice lacking the casein kinase IIα′ catalytic subunit. Nat. Genet. 23, 118–121 (1999).

    Article  CAS  Google Scholar 

  49. Kato, T. Jr, Delhase, M., Hoffmann, A. & Karin, M. CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol. Cell 12, 829–839 (2003).

    Article  CAS  Google Scholar 

  50. Scaglioni, P.P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.W. Litchfield (The University of Western Ontario) for the gift of antibodies to CK2-α′ and CK2-β subunits. This research was supported by Canadian Institutes of Health Research (MOP-81194) and grants from the Deutsche Forschungsgemeinschaft (Ha-1777/7-3, Ha-1777/9-1) to R.v.H., the Volkswagen-Stiftung (Lichtenberg program) and Bundesministerium für Bildung und Forschung (Center for Stroke Research Berlin) to M.E.

Author information

Authors and Affiliations

Authors

Contributions

J.R. performed the two-hybrid screen and contributed to the in vitro experiments. C.H., K.G. and M.N. performed some of the animal experiments and contributed to the in vivo analysis of the mice. J.A. contributed to the generation of recombinant TAT proteins. L.H., R.D. and R.v.H. carried out experimental design, data analysis and manuscript preparation. R.v.H. supervised L.H. and J.R.

Corresponding author

Correspondence to Rüdiger von Harsdorf.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–3, Supplementary Tables 1–3 and Supplementary Methods (PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauck, L., Harms, C., An, J. et al. Protein kinase CK2 links extracellular growth factor signaling with the control of p27Kip1 stability in the heart. Nat Med 14, 315–324 (2008). https://doi.org/10.1038/nm1729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing