Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic model of selective COX2 inhibition reveals novel heterodimer signaling

Abstract

Selective inhibitors of cyclooxygenase-2 (COX2) have attracted widespread media attention because of evidence of an elevated risk of cardiovascular complications in placebo-controlled trials, resulting in the market withdrawal of some members of this class1,2,3,4,5. These drugs block the cyclooxygenase activity of prostaglandin H synthase-2 (PGHS2), but do not affect the associated peroxidase function. They were developed with the rationale of conserving the anti-inflammatory and analgesic actions of traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) while sparing the ability of PGHS1-derived prostaglandins to afford gastric cytoprotection1,2,6. PGHS1 and PGHS2 coexist in the vasculature and in macrophages, and are upregulated together in inflammatory tissues such as rheumatoid synovia7 and atherosclerotic plaque8. They are each believed to function as homodimers6. Here, we developed a new genetic mouse model of selective COX2 inhibition using a gene-targeted point mutation, resulting in a Y385F substitution. Structural modeling and biochemical assays showed the ability of PGHS1 and PGHS2 to heterodimerize and form prostaglandins. The heterodimerization of PGHS1-PGHS2 may explain how the ductus arteriosus closes normally at birth in mice expressing PGHS2 Y385F, but not in PGHS2-null mice9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of a genetic model of COX2 inhibition using a targeted point mutation resulting in a Y385F amino acid substitution.
Figure 2: Normal postnatal ductus arteriosus closure in mutant Ptgs2Y385F/Y385F mice.
Figure 3: Formation of PGHS1-PGHS2 heterodimers.

Similar content being viewed by others

References

  1. FitzGerald, G.A. Coxibs and cardiovascular disease. N. Engl. J. Med. 351, 1709–1711 (2004).

    Article  CAS  Google Scholar 

  2. Grosser, T., Fries, S. & FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).

    Article  CAS  Google Scholar 

  3. Bresalier, R.S. et al. Adenomatous Polyp Prevention on Vioxx (APPROVe) Trial Investigators. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005).

    Article  CAS  Google Scholar 

  4. Solomon, S.D. et al. Adenoma Prevention with Celecoxib (APC) Study Investigators. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  Google Scholar 

  5. Nussmeier, N.A. et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N. Engl. J. Med. 352, 1081–1091 (2005).

    Article  CAS  Google Scholar 

  6. Smith, W.L., DeWitt, D.L. & Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182 (2000).

    Article  CAS  Google Scholar 

  7. Crofford, L.J. et al. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 β, phorbol ester, and corticosteroids. J. Clin. Invest. 93, 1095–1101 (1994).

    Article  CAS  Google Scholar 

  8. Schonbeck, U., Sukhova, G.K., Graber, P., Coulter, S. & Libby, P. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am. J. Pathol. 155, 1281–1291 (1999).

    Article  CAS  Google Scholar 

  9. Loftin, C.D. et al. Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc. Natl. Acad. Sci. USA 98, 1059–1064 (2001).

    Article  CAS  Google Scholar 

  10. Loftin, C.D., Trivedi, D.B. & Langenbach, R. Cyclooxygenase-1-selective inhibition prolongs gestation in mice without adverse effects on the ductus arteriosus. J. Clin. Invest. 110, 549–557 (2002).

    Article  CAS  Google Scholar 

  11. Picot, D., Loll, P.J. & Garavito, R.M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243–249 (1994).

    Article  CAS  Google Scholar 

  12. Kurumbail, R.G. et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648 (1996).

    Article  CAS  Google Scholar 

  13. Malkowski, M.G., Ginell, S.L., Smith, W.L. & Garavito, R.M. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 289, 1933–1937 (2000).

    Article  CAS  Google Scholar 

  14. Morham, S.G. et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83, 473–482 (1995).

    Article  CAS  Google Scholar 

  15. Dinchuk, J.E. et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378, 406–409 (1995).

    Article  CAS  Google Scholar 

  16. Lim, H. et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91, 197–208 (1997).

    Article  CAS  Google Scholar 

  17. Shimokawa, T., Kulmacz, R.J., DeWitt, D.L. & Smith, W.L. Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis. J. Biol. Chem. 265, 20073–20076 (1990).

    CAS  PubMed  Google Scholar 

  18. Yu, Y. et al. Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition. J. Clin. Invest. 115, 986–995 (2005).

    Article  CAS  Google Scholar 

  19. Nguyen, M. et al. The prostaglandin receptor EP4 triggers remodelling of the cardiovascular system at birth. Nature 390, 78–81 (1997).

    Article  CAS  Google Scholar 

  20. Segi, E. et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem. Biophys. Res. Commun. 246, 7–12 (1998).

    Article  CAS  Google Scholar 

  21. Smith, G.C. The pharmacology of the ductus arteriosus. Pharmacol. Rev. 50, 35–58 (1998).

    CAS  PubMed  Google Scholar 

  22. Yuan, C., Rieke, C.J., Rimon, G., Wingerd, B.A. & Smith, W.L. Partnering between monomers of cyclooxygenase-2 homodimers. Proc. Natl. Acad. Sci. USA 103, 6142–6147 (2006).

    Article  CAS  Google Scholar 

  23. Trifan, O.C., Smith, R.M., Thompson, B.D. & Hla, T. Overexpression of cyclooxygenase-2 induces cell cycle arrest. Evidence for a prostaglandin-independent mechanism. J. Biol. Chem. 274, 34141–34147 (1999).

    Article  CAS  Google Scholar 

  24. Funk, C.D., Funk, L.B., Kennedy, M., Pong, A. & FitzGerald, G.A. Human platelet/erythroleukemia cell prostaglandin endoperoxide synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5, 2304–2312 (1991).

    Article  CAS  Google Scholar 

  25. Chen, W., Pawelek, T.R. & Kulmacz, R.J. Hydroperoxide dependence and cooperative cyclooxygenase kinetics in prostaglandin H synthase-1 and -2. J. Biol. Chem. 274, 20301–20306 (1999).

    Article  CAS  Google Scholar 

  26. Cheng, Y. et al. Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin. Invest. 116, 1391–1399 (2006).

    Article  CAS  Google Scholar 

  27. Campean, V., Theilig, F., Paliege, A., Breyer, M. & Bachmann, S. Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse). Am. J. Physiol. Renal Physiol. 285, F19–F32 (2003).

    Article  CAS  Google Scholar 

  28. Zhang, X., Morham, S.G., Langenbach, R. & Young, D.A. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J. Exp. Med. 190, 451–59 (1999).

    Article  CAS  Google Scholar 

  29. Szewczuk, L.M., Forti, L., Stivala, L.A. & Penning, T.M. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J. Biol. Chem. 279, 22727–22737 (2004).

    Article  CAS  Google Scholar 

  30. Selinsky, B.S., Gupta, K., Sharkey, C.T. & Loll, P.J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40, 5172–5180 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the US National Institutes of Health, the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Ontario. We are grateful to J. Richa and the Transgenic Core Facilities at the University of Pennsylvania for ES cell injection and generation of chimeras; to Q.C. Yu and the Biomedical Imaging Core at University of Pennsylvania for electron microscopy analysis; to J.F. Ferrari and H. Zhou for mass spectrometry measurements; and to J. Zhen for technical assistance. We thank C. Renner at the Fox Chase Cancer Center for ductus arteriosus histology assistance and the clinic laboratory of the Veterinary Hospital, University of Pennsylvania, for assay of mouse serum creatinine and BUN. G.A.F. is the Elmer Bobst Professor of Pharmacology. C.D.F. holds a Tier I Canada Research Chair in Molecular, Cellular and Physiological Medicine and is a Career Investigator of the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D Funk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PGHS1-PGHS2 heterodimer formation in transfected cells. (PDF 111 kb)

Supplementary Fig. 2

Effect of celecoxib on prostaglandin formation from immunocomplexes. (PDF 103 kb)

Supplementary Fig. 3

PGHS1-PGHS2 heterodimer formation in vitro. (PDF 149 kb)

Supplementary Fig. 4

Celecoxib does not influence COX activity of putative PGHS1-PGHS2 Y385F heterodimers in intact macrophages. (PDF 116 kb)

Supplementary Fig. 5

PGE2 production in wild-type, PGHS2 Y385F and PGHS2 knockout mice. (PDF 119 kb)

Supplementary Fig. 6

Selective inhibition of PGHS COX2 activity causes renal dysfunction. (PDF 285 kb)

Supplementary Fig. 7

Kidney injury in PGHS2 mutant mice. (PDF 299 kb)

Supplementary Table 1

PGHS2 selective inhibition or deficiency perturbs female term pregnancy. (PDF 21 kb)

Supplementary Note (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Fan, J., Chen, XS. et al. Genetic model of selective COX2 inhibition reveals novel heterodimer signaling. Nat Med 12, 699–704 (2006). https://doi.org/10.1038/nm1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing