Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vpx is required for dissemination and pathogenesis of SIVSM PBj: Evidence of macrophage-dependent viral amplification

Abstract

The viral accessory protein Vpx is required for productive in vitro infection of macrophages by simian immunodeficiency virus from sooty mangabey monkeys (SIV SM ). To evaluate the roles of Vpx and macrophage infection in vivo , we inoculated pigtailed macaques intravenously or intrarectally with the molecularly cloned, macrophage tropic, acutely pathogenic virus SIV SM PBj 6.6, or accessory gene deletion mutants (ΔVpr or ΔVpx) of this virus. Both wild-type and SIV SM PBj ΔVpx viruses were readily transmitted across the rectal mucosa. A subsequent 'stepwise' process of local amplification of infection and dissemination was observed for wild-type virus, but not for SIV SM PBj ΔVpx, which also showed considerable impairment of the overall kinetics and extent of its replication. In animals co-inoculated with equivalent amounts of wild-type and SIV SM Pbj ΔVpx intravenously or intrarectally, the ΔVpx mutant was at a strong competitive disadvantage. Vpx-dependent viral amplification at local sites of initial infection, perhaps through a macrophage-dependent mechanism, may be a prerequisite for efficient dissemination of infection and pathogenic consequences after exposure through either mucosal or intravenous routes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of plasma viremia and lymphopenia in macaques inoculated intrarectally with ΔVpr (left graphs: □, 541; , 547) or ΔVpx mutants (right graphs: □, 607; , 608) or with WT SIVSM PBj (▪, 526; •, 539).
Figure 2: Kinetics of plasma viremia and lymphopenia in macaques inoculated intravenously with ΔVpr (left graphs: □, 437; , 453) or ΔVpx mutants (right graphs: □, 537; , 549) or with WT SIVSM PBj (▪, 123; •, 389).
Figure 3: Representative SIV-specific in situ hybridization and immunohistochemistry for Ham-56 (macrophage marker) in tissues of macaques inoculated intrarectally with either WT SIVSM PBj (a,d–g) or the ΔVpx mutant virus (b and c).
Figure 4: Double labeling for SIV expression and cell surface expression of CD3 or Ham56 (macrophage) in rectal sections collected at peak viremia, demonstrating both SIV-infected T lymphocytes (top row, ac) and macrophages (middle row, df).
Figure 5: Replication and proportional representation of SIVSM PBj WT, ΔVpr and ΔVpx mutant viruses after intravenous or intrarectal co-inoculation.

Similar content being viewed by others

References

  1. Wolfs, T.F.W., Zwart, G., Bakker, M. & Goudsmit, J. HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology 189, 103–110 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  2. Keet, I.P.M. et al. Predictors of rapid progression to AIDS in HIV-1 seroconverters. AIDS 7, 51–57 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261, 1179– 1181 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Roos, M.T.L. et al. Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J. Infect. Dis. 165, 427–432 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen, C., Pedersen, C., Lundgren, J.D. & Gerstoft, J. Biological properties of HIV isolates in primary HIV infection: consequences for the subsequent course of infection. AIDS 7, 1035–1040 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Lu, L. et al. Vaginal transmission of chimeric simian/human immunodeficiency viruses in rhesus macaques. J. Virol. 70, 3045– 3050 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger, E.A. et al. A new classification for HIV-1. Nature 391, 240 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Heinzinger, N. et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311– 7315 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bailliet, J.W. et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type I accessory genes vpr, vpu and nef: mutational analysis of a primary HIV-1 isolate. Virology 200, 623–631 (1994).

    Article  Google Scholar 

  10. Connor, R.I., Chen, B.K., Choe, S. & Landau, N.R. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mono-nuclear phagocytes. Virology 206, 935– 944 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, B.J. & Hirsch, V.M. Vpr of simian immunodeficiency virus of African green monkeys is required for replication in macaque macrophages and lymphocytes. J. Virol. 71, 5593–5602 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher, T.M. et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIMSM. EMBO J. 15, 6155–6165 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vodicka, M.A., Koepp, D.M., Silver, P.A. & Emerman, M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12, 175– 185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, J. et al. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69, 6705–6711 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jowett, J.B.M. et al. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + phase of the cell cycle. J. Virol. 69, 6304–6313 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Re, F., Braaten, D., Franke, E.K. & Luban, J. Human immunodefciency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J. Virol. 69, 6859–6864 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogel, M.E., Wu, L.I. & Emerman, M. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J. Virol. 69, 882–888 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stivahtis, G.L., Soares, M.A., Vodicka, M.A., Hahn, B.H. & Emerman, M. Conservation and host specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate lentivirus evolution and biology. J. Virol. 71, 4331–4338 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharp, P.M., Bailes, E., Stevenson, M., Emerman, M. & Hahn, B.H. Gene acquisition in HIV and SIV. Nature 383, 586–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Fultz, P.N. & Zack, P.M. Unique lentivirus-host interactions: SIVSMMPBj14 infection of macaques. Virus Research 32, 205–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Lifson, J.D. et al. The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. J. Virol. 71, 9508–9514 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Watson, A. et al. Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival. J. Virol. 71, 284–290 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wolinsky, S.M. et al. Selective transmission of human immunodeficiency virus type 1 variants from mothers to infants. Science 255, 1134–1137 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L. et al. Rate of SIV particle clearance in rhesus macaques in 5th Conference on Retroviruses and Opportunistic Infections (Chicago, Illinois 1998).

    Google Scholar 

  25. Sleigh, R., Sharkey, M., Newman, M.A., Hahn, B. & Stevenson, M. Differential association of uracil DNA glycosylase with SIVSM Vpr and Vpx proteins. Virology 245(1998).

  26. Selig, L. et al. Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J. Virol. 71, 4842–4846 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spira, A.I. et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 183, 215– 225 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Reece, J.C. et al. HIV-1 selection by epidermal dendritic cells during transmission across human skin. J. Exp. Med. 187, 1623–1631 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller, C.J. Mucosal transmission of simian immunodeficiency virus. Curr. Top. Microbiol. Immunol. 188, 107 (1994).

    CAS  PubMed  Google Scholar 

  30. Desrosiers, R.C. et al. Macrophage-tropic variants of SIV are associated with specific AIDS-related lesions but are not essential for the development of AIDS. Am. J. Pathol. 139, 29–35 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaitseva, M. et al. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nature Med. 3, 1369–1375 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gibbs, J.S. et al. Progression to AIDS in the absence of a gene for vpr and vpx. J. Virol. 69, 2378– 2383 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidtmayerova, H. et al. Human immunodeficiency virus type 1 infection alters chemokine ? peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. USA 93, 700–704 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du, Z. et al. Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 82, 655–674 (1995).

    Article  Google Scholar 

  35. Mann, D.L., Gartner, S., LeSane, F., Buchow, H. & Popovic, M. HIV-1 transmission and function of virus-infected monocytes/macrophages. J. Immunol. 144, 2152– 2158 (1990).

    CAS  PubMed  Google Scholar 

  36. Schrier, R.D., McCutchan, A. & Wiley, C.A. Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages. J. Virol. 5713– 5720 (1993).

  37. Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, L. et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marx, P.A. & Chen, Z. The function of simian chemokine receptors in the replication of SIV. Sem. Immunol. 10, 215–223 (1998).

    Article  CAS  Google Scholar 

  41. Novembre, F.J. et al. Multiple viral determinants contribute to pathogenicity of the acutely lethal simian immunodeficiency virus SIVSMM PBj variant. J. Virol. 67, 2466–2474 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Israel, Z.R. et al. Early pathogenesis of disease caused by SIVSMM PBj14 molecular clone 1.9 in macaques. AIDS Res. Hum. Retroviruses 9, 277–286 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Hirsch, V.M. et al. Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: Effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J. Virol. 70, 3741–3752 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Suryanarayana, K., Wiltrout, T.A., Vasquez, G.M., Hirsch, V.M. & Lifson, J.D. Plasma SIV RNA viral load by real time quantification of product generation in RT PCR. AIDS Res. Hum. Retroviruses 14, 183–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Dewhurst, S., Embretson, J.E., Anderson, D.C., Mullins, J.I. & Fultz, P.N. Sequence analysis and acute pathogenicity of molecularly cloned SIV. Nature 345, 636–640 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Mc Pherson (UAB CFAR Protein Expression Core) for construction of the PBj 6.6 X2 and R2 clones, and T. Wiltrout and G. Vasquez for technical assistance with viral load analyses. This research was supported in part by grants AI37475, HL57880 and RR11589 (MS) and AI34748 and U01 AI 35282 (BHH) and with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. NO1-CO-56000.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, V., Sharkey, M., Brown, C. et al. Vpx is required for dissemination and pathogenesis of SIVSM PBj: Evidence of macrophage-dependent viral amplification. Nat Med 4, 1401–1408 (1998). https://doi.org/10.1038/3992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing