Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells

Abstract

The finding of frequent nitric oxide synthase expression in human cancers indicates that nitric oxide has a pathophysiological role in carcinogenesis. To determine the role of nitric oxide in tumor progression, we generated human carcinoma cell lines that produced nitric oxide constitutively. Cancer cells expressing inducible nitric oxide synthase that had wild-type p53 had reduced tumor growth in athymic nude mice, whereas those with mutated p53 had accelerated tumor growth associated with increased vascular endothelial growth factor expression and neovascularization. Our data indicate that tumor-associated nitric oxide production may promote cancer progression by providing a selective growth advantage to tumor cells with mutant p53, and that inhibitors of inducible nitric oxide synthase may have therapeutic activity in these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NOS2 expression and tumor growth. a and b, NO production in human carcinoma cells does not change cell growth in cell culture.
Figure 2: Expression of p21WAF1 protein is higher in tumors of NOS2-expressing LoVo cells than in tumors of the vector controls (BaglacZ).
Figure 3: a, The NOS2 inhibitor aminoguanidine (1% AG) reverses the growth stimulatory effect of NOS2 in tumors of HT-29 colon carcinoma cells.
Figure 4: NO induces tumor microvascularization.
Figure 5: a, Increased VEGF concentration in protein extracts of NOS2-expressing human carcinoma cell lines.
Figure 6: Nitric oxide inhibits pro-apoptotic PARP cleavage.

Similar content being viewed by others

References

  1. Thomsen, L.L. et al. Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72, 41– 44 (1995).

    Article  CAS  Google Scholar 

  2. Ellie, E., Loiseau, H., Lafond, F., Arsaut, J. & Demotes-Mainard, J. Differential expression of inducible nitric oxide synthase mRNA in human brain tumors. Neuroreport 7, 294–296 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Ambs, S. et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58, 334–341 (1998).

    CAS  PubMed  Google Scholar 

  4. Gallo, O. et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl. Cancer Inst. 90, 587–596 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Thomsen, L.L. et al. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 57, 3300–3304 (1997).

    CAS  PubMed  Google Scholar 

  6. Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182, 1683–1693 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Ziche, M. et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor—induced but not basic fibroblast growth factor—induced angiogenesis. J. Clin. Invest. 99, 2625– 2634 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chin, K. et al. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15, 437–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Jenkins, D.C. et al. Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. USA 92, 4392–4396 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards, P. et al. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J. Surg. Res. 63, 49–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Cardena, G. & Folkman, J. Is there a role for nitric oxide in tumor angiogenesis? J. Natl. Cancer Inst. 90, 560–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dong, Z., Staroselsky, A.H., Qi, X., Xie, K. & Fidler, I.J. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res. 54, 789–793 (1994).

    CAS  PubMed  Google Scholar 

  13. Xie, K. et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J. Exp. Med. 181, 1333–1343 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Geng, Y.J., Hellstrand, K., Wennmalm, A. & Hansson, G.K. Apoptotic death of human leukemic cells induced by vascular cells expressing nitric oxide synthase in response to gamma-interferon and tumor necrosis factor-alpha. Cancer Res. 56, 866–874 (1996).

    CAS  PubMed  Google Scholar 

  15. Nicotera, P., Bonfoco, E. & Brune, B. Mechanisms for nitric oxide-induced cell death: involvement of apoptosis. Adv. Neuroimmunol. 5, 411– 420 (1997).

    Article  Google Scholar 

  16. Kim, Y.M., Talanian, R.V. & Billiar, T.R. Nitric oxide inhibits apoptosis . J. Biol. Chem. 272, 1402–1411 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Mannick, J.B., Miao, X.Q. & Stamler, J.S. Nitric oxide inhibits Fas-induced apoptosis. J. Biol. Chem. 272, 24125–24128 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Messmer, U.K. & Brune, B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319, 299–305 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forrester, K. et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase (NOS2) expression by wild-type p53. Proc. Natl. Acad. Sci. USA 93, 2442–2447 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tzeng, E., Billiar, T.R., Robbins, P.D., Loftus, M. & Stuehr, D.J. Expression of human inducible NO synthase in a tetrahydrobiopterin promotes assembly of enzyme subunits into an active dimer. Proc. Natl. Acad. Sci. USA 92, 11771–11775 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis, R.S., Tamir, S., Tannenbaum, S.R. & Deen, W.M. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J. Biol. Chem. 270, 29350– 29355 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Polyak, K., Waldman, T., He, T.C., Kinzler, K.W. & Vogelstein, B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 10, 1945– 1952 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths, M.J., Messent, M., MacAllister, R.J. & Evans, T.W. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br. J. Pharmacol. 110, 963–968 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vermeulen, P.B. et al. Correlation of intratumoral microvessel density and p53 protein overexpression in human colorectal adenocarcinoma. Microvasc. Res. 51, 164–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hentze, M.W. & Kuhn, L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 8175–8182 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gleadle, J.M., Ebert, B.L., Firth, J.D. & Ratcliffe, P.J. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol. 268, C1362–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Piazza, G.A. et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 55, 3110–3116 (1995).

    CAS  PubMed  Google Scholar 

  28. Tsurumi, Y. et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nature Med. 3, 879–886 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Greenblatt, M.S., Bennett, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855– 4878 (1994).

    CAS  PubMed  Google Scholar 

  31. Ambs, S., Hussain, S.P. & Harris, C.C. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J. 11, 443–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Geller, D.A. et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc. Natl. Acad. Sci. USA 90, 3491–3495 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rak, J. et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55, 4575–4580 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Dudek for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis C. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambs, S., Merriam, W., Ogunfusika, M. et al. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med 4, 1371–1376 (1998). https://doi.org/10.1038/3957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing