Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection

Abstract

Targeted gene transduction to specific tissues and organs through intravenous injection would be the ultimate preferred method of gene delivery. Here, we report successful targeting in a living animal through intravenous injection of a lentiviral vector pseudotyped with a modified chimeric Sindbis virus envelope (termed m168). m168 pseudotypes have high titer and high targeting specificity and, unlike other retroviral pseudotypes, have low nonspecific infectivity in liver and spleen. A mouse cancer model of metastatic melanoma was used to test intravenous targeting with m168. Human P-glycoprotein was ectopically expressed on the surface of melanoma cells and targeted by the m168 pseudotyped lentiviral vector conjugated with antibody specific for P-glycoprotein. m168 pseudotypes successfully targeted metastatic melanoma cells growing in the lung after systemic administration by tail vein injection. Further development of this targeting technology should result in applications not only for cancers but also for genetic, infectious and immune diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: HIV vector pseudotyped by ZZ SINDBIS has nonspecific infectivity in the absence of target-specific antibody in vitro and in vivo.
Figure 2: Generation of ZZ SINDBIS mutants to reduce nonspecific infection.
Figure 3: The m168 pseudotyped lentiviral vector has reduced nonspecific infectivity and mediates antibody-directed targeted gene transduction after systemic injection into mice.

References

  1. Nicklin, S.A. & Baker, A.H. Tropism-modified adenoviral and adeno-associated viral vectors for gene therapy. Curr. Gene Ther. 2, 273–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Muller, O.J. et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Biotechnol. 21, 1040–1046 (2003).

    Article  PubMed  Google Scholar 

  3. Martin, K. et al. Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol. Ther. 8, 485–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Sandrin, V., Russell, S.J. & Cosset, F.L. Targeting retroviral and lentiviral vectors. Curr. Top. Microbiol. Immunol. 281, 137–178 (2003).

    CAS  PubMed  Google Scholar 

  5. Martin, F., Chowdhury, S., Neil, S., Phillipps, N. & Collins, M.K. Envelope-targeted retrovirus vectors transduce melanoma xenografts but not spleen or liver. Mol. Ther. 5, 269–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, A. & Dornburg, R. In vivo cell type-specific gene delivery with retroviral vectors that display single chain antibodies. Gene Ther. 6, 1982–1987 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Han, X., Kasahara, N. & Kan, Y.W. Ligand-directed retroviral targeting of human breast cancer cells. Proc. Natl. Acad. Sci. USA 92, 9747–9751 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marin, M. et al. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J. Virol. 70, 2957–2962 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nilson, B.H., Morling, F.J., Cosset, F.L. & Russell, S.J. Targeting of retroviral vectors through protease-substrate interactions. Gene Ther. 3, 280–286 (1996).

    CAS  PubMed  Google Scholar 

  10. Somia, N.V., Zoppe, M. & Verma, I.M. Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc. Natl. Acad. Sci. USA 92, 7570–7574 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valsesia-Wittmann, S. et al. Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J. Virol. 68, 4609–4619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boerger, A.L., Snitkovsky, S. & Young, J.A. Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc. Natl. Acad. Sci. USA 96, 9867–9872 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roux, P., Jeanteur, P. & Piechaczyk, M. A versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc. Natl. Acad. Sci. USA 86, 9079–9083 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kasahara, N., Dozy, A.M. & Kan, Y.W. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, Y. et al. Identification of the block in targeted retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA 96, 4005–4010 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akporiaye, E.T. & Hersh, E. Clinical aspects of intratumoral gene therapy. Curr. Opin. Mol. Ther. 1, 443–453 (1999).

    CAS  PubMed  Google Scholar 

  17. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [see comments]. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Morizono, K., Bristol, G., Xie, Y.M., Kung, S.K. & Chen, I.S. Antibody-directed targeting of retroviral vectors via cell surface antigens. J. Virol. 75, 8016–8020 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, K.S., Kuhn, R.J., Strauss, E.G., Ou, S. & Strauss, J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 66, 4992–5001 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Klimstra, W.B., Ryman, K.D. & Johnston, R.E. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 72, 7357–7366 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Heidner, H.W., McKnight, K.L., Davis, N.L. & Johnston, R.E. Lethality of PE2 incorporation into Sindbis virus can be suppressed by second-site mutations in E3 and E2. J. Virol. 68, 2683–2692 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Allen, P.J. & Coit, D.G. The role of surgery for patients with metastatic melanoma. Curr. Opin. Oncol. 14, 221–226 (2002).

    Article  PubMed  Google Scholar 

  27. Ambudkar, S.V., Kimchi-Sarfaty, C., Sauna, Z.E. & Gottesman, M.M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Berger, W. et al. Intrinsic MDR-1 gene and P-glycoprotein expression in human melanoma cell lines. Int. J. Cancer 59, 717–723 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Cameron, M.D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).

    CAS  PubMed  Google Scholar 

  30. Sawai, K. & Meruelo, D. Cell-specific transfection of choriocarcinoma cells by using Sindbis virus hCG expressing chimeric vector. Biochem. Biophys. Res. Commun. 248, 315–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Lehrman, S. Virus treatment questioned after gene therapy death. Nature 401, 517–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Barry, S.C. et al. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum. Gene Ther. 12, 1103–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Bunting, K.D., Galipeau, J., Topham, D., Benaim, E. & Sorrentino, B.P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92, 2269–2279 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E.S. Withers-Ward and L. Lowe for manuscript preparation, S. Gambhir and D. Stout for supporting in vivo imaging, S. Cole and M. Sato for technical assistance with real time PCR, D. Baltimore, W. Osborne, B. Sorrentino, P. Charneau and M. Miyasaka for providing reagents, and V. Hearing, S. Leong and T. Miyamoto for assistance with histological analysis. This work was supported by US National Institutes of Health grants CA-92194, AI039975, AI028697 (UCLA CFAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin S Y Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of FUhLucW, FUIntronRW and CCRMDRsc1 (PDF 606 kb)

Supplementary Fig. 2

Anti-SINDBIS virus antibody blocked non-specific background infectivity of the ZZ SINDBIS pseudotyped lentiviral vector. (PDF 762 kb)

Supplementary Fig. 3

The m168 pseudotyped lentiviral vector demonstrates a higher specificity of infection in melanoma cell in vitro. (PDF 741 kb)

Supplementary Fig. 4

Expression of human P-glycoprotein on the surface of cells isolated from metastatic tumors used in the in vitro luciferase and PCR assay. (PDF 676 kb)

Supplementary Fig. 5

Immunohistochemical analysis of metastasized tumors targeted by FUGW (m168) with anti-P-glycoprotein. (PDF 981 kb)

Supplementary Fig. 6

Analysis of gene transduction in liver and spleen. (PDF 816 kb)

Supplementary Table 1

Analysis of properties of mutants (PDF 34 kb)

Supplementary Methods (PDF 54 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morizono, K., Xie, Y., Ringpis, GE. et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 11, 346–352 (2005). https://doi.org/10.1038/nm1192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing