Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acquired CD40-ligand deficiency in chronic lymphocytic leukemia

Abstract

Patients with B-cell chronic lymphocytic leukemia (CLL) acquire an immunodeficiency with many characteristics similar to those of persons with inherited defects in the gene encoding the CD40-ligand (CD154). We found that the blood and splenic CD4+ T cells of patients with CLL failed to express surface CD154 after CD3 ligation. However, using an enzyme-linked immunosorbent assay (ELISA)-based quantitative competitive polymerase chain reaction (PCR), we noted that CD3 ligation could induce such T cells to express CD154 messenger RNA at levels similar to that of CD3-activated T cells from normal donors. Moreover, addition of increasing numbers of CLL B cells to activated normal donor T cells rapidly resulted in progressively greater down-modulation of CD154. Such down-modulation of CD154 could be blocked by addition of CD40 monoclonal antibody to cultures in vitro. We propose that leukemia cell-mediated down-modulation of CD154 on activated T cells accounts for some of the acquired immune defects of patients with CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roy, M., Waldschmidt, T., Aruffo, A., Ledbetter, J.A. & Noelle, R.J. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD49+ T cells. J. Immunol. 151, 2497–2510 (1993).

    CAS  PubMed  Google Scholar 

  2. Castle, B.E., Kishimoto, K., Steams, C., Brown, M.L. & Kehry, M.R. Regulation of expression of the ligand for CD40 on T helper lymphocytes. J. Immunol. 151, 1777–1788 (1993).

    CAS  PubMed  Google Scholar 

  3. Banchereau, J. et al. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922 (1994).

    Article  CAS  Google Scholar 

  4. Clark, E.A. & Ledbetter, J.A. How B and T cells talk to each other. Nature 367, 425–428 (1994).

    Article  CAS  Google Scholar 

  5. Van den Eertwegh, A.J. et al. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines and antibody production delineates sites of cognate T-B Cell interactions. J. Exp. Med. 178, 1555–1565 (1993).

    Article  CAS  Google Scholar 

  6. Casamayor-Palleja, M., Khan, M. & MacLennan, I.C. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T Cell receptor complex. J. Exp. Med. 181, 1293–1301 (1995).

    Article  CAS  Google Scholar 

  7. Han, S. et al. Cellular interaction in germinal centers: Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  8. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    Article  CAS  Google Scholar 

  9. Allen, R.C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  Google Scholar 

  10. DiSanto, J.P., Bonnefoy, J.Y., Gauchat, J.F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in X-iinked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  Google Scholar 

  11. Korthauer, U. et al. Defective expression of T-Cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361, 539–541 (1993).

    Article  CAS  Google Scholar 

  12. Grewal, I.S., Xu, J. & Flavell, R.A. Impairment of antigen-specific T-Cell priming in mice lacking CD40 ligand. Nature 378, 617–620 (1995).

    Article  CAS  Google Scholar 

  13. Kipps, T.J. Chronic lymphocytic leukemia and related diseases. in William's Hematology. (eds. Beutler, E., Lichtman, M.A., Coller, B.S. & Kipps, T.J.) 1017–1039 (McGraw-Hill, Inc., New York, 1995).

    Google Scholar 

  14. Hamblin, T.J., Oscier, D.G. & Young, B.J. Autoimmunity in chronic lymphocytic leukaemia. J. Clin. Pathol. 39, 713–716 (1986).

    Article  CAS  Google Scholar 

  15. Westbrook, C.A. & Golde, D.W. Clinical problems in hairy Cell leukemia: Diagnosis and management. Semin. Oncol. 11, 514–522 (1984).

    CAS  PubMed  Google Scholar 

  16. Rosen, F.S., Cooper, M.D. & Wedgwood, R.J. The primary immunodeficiencies. N. Engl. J. Med. 333, 431–440 (1995).

    Article  CAS  Google Scholar 

  17. Lucivero, G., Prchal, J.T., Lawton, A.R., Antonaci, S. & Bonomo, L. Abnormal T-Cell functions in B-Cell chronic lymphocytic leukemia do not imply T-lymphocyte involvement in the leukemic process: Report of a case with demonstrated “polyclonality” of T lymphocytes. J. Clin. Immunol. 3, 111–116 (1983).

    Article  CAS  Google Scholar 

  18. Han, T. et al. Lack of autologous mixed lymphocyte reaction in patients with chronic lymphocytic leukemia: Evidence for autoreactive T-Cell dysfunction not correlated with phenotype, karyotype, or clinical status. Blood 60, 1075–1081 (1982).

    CAS  PubMed  Google Scholar 

  19. Kay, N.E. & Kaplan, M.E. Defective T Cell responsiveness in chronic lymphocytic leukemia: Analysis of activation events. Blood 67, 578–581 (1986).

    CAS  PubMed  Google Scholar 

  20. Kay, N.E. & Kaplan, M.E. Defective expression of T Cell antigens in chronic lymphocytic leukaemia: Relationship to T Cell dysfunction. Br. J. Haematol. 57, 105–111 (1984).

    Article  CAS  Google Scholar 

  21. Ayanlar-Batuman, O., Ebert, E. & Hauptman, S.P. Defective interleukin-2 production and responsiveness by T cells in patients with chronic lymphocytic leukemia of B Cell variety. Blood 67, 279–284 (1986).

    CAS  PubMed  Google Scholar 

  22. Fernandez, L.A., MacSween, J.M. & Langley, G.R. T Cell function in untreated B Cell chronic lymphocytic leukemia. Cancer 39, 1168–1174 (1977).

    Article  CAS  Google Scholar 

  23. Platsoucas, C.D. et al. Defective spontaneous and antibody-dependent cytotoxicity mediated by E-rosette-positive and E-rosette-negative cells in untreated patients with chronic lymphocytic leukemia: Augmentation by in vitro treatment with interferon. J. Immunol. 125, 1216–1223 (1980).

    CAS  PubMed  Google Scholar 

  24. Callery, R.T. et al. Functional abnormalities associated with T lymphocytes from patients with chronic lymphocytic leukemia. Clin. Immunol. Immunopathol. 17, 451–458 (1980).

    Article  CAS  Google Scholar 

  25. Semenzato, G., Pezzutto, A., Agostini, C., Albertin, M. & Gasparotto, G. T-lymphocyte subpopulations in chronic lymphocytic leukemia: A quantitative and functional study. Cancer 48, 2191–2197 (1981).

    Article  CAS  Google Scholar 

  26. Matutes, E., Wechsler, A., Gomez, R., Cherchi, M. & Catovsky, D. Unusual T-Cell phenotype in advanced B-chronic lymphocytic leukaemia. Br. J. Haematol. 49, 635–642 (1981).

    Article  CAS  Google Scholar 

  27. Totterman, T.H., Carlsson, M., Simonsson, B., Bengtsson, M. & Nilsson, K. T-Cell activation and subset patterns are altered in B-CLL and correlate with the stage of the disease. Blood 74, 786–792 (1989).

    CAS  PubMed  Google Scholar 

  28. Patel, H.R., Oshiba, A., Jeppson, J.D. & Gelfand, E.W. Differential expression of CD40 ligand on T Cell subsets: Implications for different roles of CD45RA+ and CD45RO+ cells in IgE production. J. Immunol. 156, 1781–1787 (1996).

    CAS  PubMed  Google Scholar 

  29. Lotz, M., Ranheim, E. & Kipps, T.J. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J. Exp. Med. 179, 999–1004 (1994).

    Article  CAS  Google Scholar 

  30. van Kooten, C. et al. B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40. Eur. J. Immunol. 24, 787–792 (1994).

    Article  CAS  Google Scholar 

  31. Grammer, A.C. et al. The CD40 ligand expressed by human B cells costimulates B Cell responses. J. Immunol. 154, 4996–5010 (1995).

    CAS  PubMed  Google Scholar 

  32. Yellin, M.J. et al. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152, 598–608 (1994).

    CAS  PubMed  Google Scholar 

  33. Storrie, B. & Edelson, P.J. Distribution of concanavalin A in fibroblasts: Direct endocytosis versus surface capping. Cell 11, 707–717 (1977).

    Article  CAS  Google Scholar 

  34. Salisbury, J.L., Condeelis, J.S. & Satir, P. Role of coated vesicles, microfilaments and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J. Cell Biol. 87, 132–141 (1980).

    Article  CAS  Google Scholar 

  35. Ranheim, E.A. & Kipps, T.J. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J. Exp. Med. 177, 925–935 (1993).

    Article  CAS  Google Scholar 

  36. Notarangelo, L.D., Duse, M. & Ugazio, A.G. Immunodeficiency with hyper-IgM (HIM). Immunodefic. Rev. 3, 101–121 (1992).

    CAS  PubMed  Google Scholar 

  37. Rossi, E. et al. Zeta chain and CD28 are poorly expressed on T lymphocytes from chronic lymphocytic leukemia. Leukemia 10, 494–497 (1996).

    CAS  PubMed  Google Scholar 

  38. Mizoguchi, H. et al. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258, 1795–1798 (1992).

    Article  CAS  Google Scholar 

  39. Bowen, F., Haluskey, J. & Quill, H. Altered CD40 ligand induction in tolerant T lymphocytes. Eur. J. Immunol. 25, 2830–2834 (1995).

    Article  CAS  Google Scholar 

  40. Hermann, P. et al. Expression of a 32-kDa ligand for the CD40 antigen on activated human T lymphocytes. Eur. J. Immunol. 23, 961–964 (1993).

    Article  CAS  Google Scholar 

  41. Paulie, S. et al. A p50 surface antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol. Immunother. 20, 23–28 (1985).

    Article  CAS  Google Scholar 

  42. Ben-Aissa, H. et al. Human bladder cancer associated antigens: evaluation of antigenicity in TCC tissues of different grades and in normal urothelium. Anticancer. Res. 8, 443–449 (1988).

    CAS  PubMed  Google Scholar 

  43. Hutchins, D. & Steel, C.M. Regulation of ICAM-1 (CD54) expression in human breast cancer cell lines by interleukin 6 and fibroblast-derived factors. Int. J. Cancer 58, 80–84 (1994).

    Article  CAS  Google Scholar 

  44. Pammer, J. et al. CD40 antigen is expressed by endotheliai cells and tumor cells in Kaposi's sarcoma. Am. J. Pathol. 148, 1387–1396 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Borrow, P. et al. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183, 2129–2142 (1996).

    Article  CAS  Google Scholar 

  46. Stuber, E., Strober, W. & Neurath, M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J. Exp. Med. 183, 693–698 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantwell, M., Hua, T., Pappas, J. et al. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med 3, 984–989 (1997). https://doi.org/10.1038/nm0997-984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0997-984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing